PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m70.
Published online 2007 December 6. doi:  10.1107/S1600536807062885
PMCID: PMC2914950

Poly[[tetra­aqua­bis[μ3-1-ethyl-6-fluoro-4-oxo-7-(piperazinium-1-yl)-1H-quinoline-3-carboxyl­ato]dinickel(II)] hydroxide nitrate]

Abstract

In the title compound, [Ni2(C16H18FN3O3)2(H2O)4](OH)(NO3), the cationic [Ni2(C16H18FN3O3)2(H2O)4]2+ building units are linked through Ni–Ocarboxyl­ate and Ni—Namino bridges into a layer structure. The two independent nickel atoms lie on inversion centres: one adopts an NiO6 octa­hedral geometry, the other a trans-NiN2O4 octahedral arrangement. The charge-balancing hydroxide and nitrate ions are of half site occupancy each. A network of O—H(...)O and N—H(...)O hydrogen bonds helps to establish the packing.

Related literature

For related structures, see Barbas et al. (2007 [triangle]); Florence et al. (2000 [triangle]). For medical background on norfloxacin, see Goldstein (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00m70-scheme1.jpg

Experimental

Crystal data

  • [Ni2(C16H18FN3O3)2(H2O)4](NO3)(OH)
  • M r = 907.17
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00m70-efi1.jpg
  • a = 8.9633 (2) Å
  • b = 9.8121 (2) Å
  • c = 13.2119 (3) Å
  • α = 101.504 (2)°
  • β = 106.301 (2)°
  • γ = 113.528 (2)°
  • V = 956.34 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.07 mm−1
  • T = 295 (2) K
  • 0.18 × 0.16 × 0.15 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.686, T max = 0.856
  • 11320 measured reflections
  • 4304 independent reflections
  • 2869 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069
  • wR(F 2) = 0.219
  • S = 1.03
  • 4304 reflections
  • 280 parameters
  • 34 restraints
  • H-atom parameters constrained
  • Δρmax = 1.65 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062885/hb2663sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062885/hb2663Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Guangdong Ocean University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The drug norfloxacin has been used in the synthesis of metal complexes as it is a carboxylic acid. There are many crystal structure reports of transition metal derivatives (Cambridge Structural Database Version 5.28, Nov. 2006) but all these have the compound in the mono-deprotonated form, in which the piperazinyl group is a neutral substitutent. In the title compound (I), the substituent is protonated (Fig. 1). There are two nickel ions in the asymmetric unit of (I), both with site symmety 1. One adopts an NiO6 geometry, the other a trans-NiN2O4 arrangement (Table 1). A network of O—H···O and N—H···O hydrogen bonds (Table 2) helps to establish the packing.

For related structures, see Barbas et al. (2007) and Florence et al. (2000). For medical background on norfloxacin, see Goldstein (1987).

Experimental

Nickel nitrate (1.0 mmol), 2,2'-bipyridine (1.0 mmol), norfloxacin (1 mmol) and water (10 ml) were hydrothermally treated in a Parr bomb at K22 K for 48 h. The bomb was cooled (5 K h-1) to room temperature to furnish blue blocks of (I).

Refinement

The divalent cation in (I) requires two negative charges for charge balance. As the hydroxide [OH]- group lies near a special position, the occupancy of the O2w atom (arbitrarily labeled with a w) should be only half. Consequently, the nitrate [NO3]- group occupancy should also be half. Attempts to refine this group with full occupancy led to high displacement factors. The group was refined with a distance restraint of N–O 1.24±0.01 Å; the four atoms were restrained to lie on a plane. The Uij values of the four atoms as well as those of the O2w atom were restrained to be nearly isotropic.

The carbon- and nitrogen-bound H atoms were placed at calculated positions (C—H = 0.93–0.97 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier). The hydroxy and water H atoms were placed in chemically reasonable positions with O—H = 0.85Å and refined as riding with Uiso(H) = 1.5Ueq(O).

The final difference Fourier map had two large peaks in the vicinity of the diordered groups.

Figures

Fig. 1.
View of a fragment of the polymeric structure of (I). Displacement ellipsoids are drawn at the 30% probability level, and hydrogen atoms as sphere of arbitrary radius. Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) x, y, 1 + z; (iii) 1 - x, 1 - y, -z; ...

Crystal data

[Ni2(C16H18FN3O3)2(H2O)4](NO3)(OH)Z = 1
Mr = 907.17F(000) = 472
Triclinic, P1Dx = 1.575 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9633 (2) ÅCell parameters from 2076 reflections
b = 9.8121 (2) Åθ = 2.6–28.0°
c = 13.2119 (3) ŵ = 1.07 mm1
α = 101.504 (2)°T = 295 K
β = 106.301 (2)°Block, blue
γ = 113.528 (2)°0.18 × 0.16 × 0.15 mm
V = 956.34 (4) Å3

Data collection

Bruker APEXII diffractometer4304 independent reflections
Radiation source: medium-focus sealed tube2869 reflections with I > 2σ(I)
graphiteRint = 0.051
[var phi] and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.686, Tmax = 0.856k = −12→12
11320 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.219H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.1076P)2 + 1.3612P] where P = (Fo2 + 2Fc2)/3
4304 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 1.65 e Å3
34 restraintsΔρmin = −0.59 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ni10.50000.50000.50000.0328 (3)
Ni21.00001.00000.50000.0362 (3)
F10.8924 (5)1.1417 (4)0.0053 (3)0.0597 (10)
O10.5117 (4)0.6049 (4)0.3832 (3)0.0403 (9)
O20.7870 (5)0.8001 (5)0.4694 (3)0.0522 (11)
O30.9054 (5)0.9832 (5)0.3374 (3)0.0450 (10)
O1w0.7762 (5)0.5892 (5)0.5746 (3)0.0516 (10)
H1w10.81190.62310.64590.077*
H1w20.82800.66500.55370.077*
O2w1.4635 (5)0.9364 (5)0.4764 (3)0.079 (3)0.50
H2w1.41730.87420.40830.118*0.50
O3w1.1392 (8)0.8776 (7)0.4696 (5)0.0892 (17)
H3w11.22090.93260.45130.134*
H3w21.06780.78870.41630.134*
N10.4068 (5)0.6750 (5)0.0911 (3)0.0353 (9)
N20.5693 (6)0.9176 (6)−0.1764 (3)0.0445 (11)
H2n0.56241.0037−0.16160.053*
N30.5140 (6)0.7018 (5)−0.3881 (4)0.0399 (10)
H3n0.48860.7535−0.42940.048*
C10.6428 (6)0.7216 (6)0.3853 (4)0.0355 (11)
C20.6166 (6)0.7618 (6)0.2808 (4)0.0343 (11)
C30.4548 (7)0.6655 (6)0.1942 (4)0.0372 (11)
H30.37040.58650.20750.045*
C40.7510 (6)0.8857 (6)0.2651 (4)0.0330 (10)
C50.6994 (6)0.8949 (6)0.1519 (4)0.0324 (10)
C60.8197 (7)1.0130 (6)0.1263 (4)0.0378 (11)
H60.93071.08820.18240.045*
C70.7757 (7)1.0182 (6)0.0216 (4)0.0400 (12)
C80.6112 (7)0.9076 (6)−0.0698 (4)0.0367 (11)
C90.4899 (7)0.7932 (6)−0.0432 (4)0.0360 (11)
H90.37900.7186−0.09960.043*
C100.5301 (6)0.7878 (6)0.0651 (4)0.0328 (10)
C110.2248 (7)0.5575 (7)0.0058 (5)0.0445 (13)
H11A0.18460.6056−0.04570.053*
H11B0.14440.52870.04340.053*
C120.2190 (9)0.4110 (8)−0.0597 (6)0.0684 (19)
H12A0.09970.3378−0.11370.103*
H12B0.25690.3622−0.00910.103*
H12C0.29650.4389−0.09840.103*
C130.6999 (9)0.9619 (7)−0.2271 (5)0.0551 (16)
H13A0.81811.0297−0.16790.066*
H13B0.67581.0214−0.27390.066*
C140.6927 (7)0.8160 (7)−0.2977 (4)0.0481 (14)
H14A0.77760.8489−0.33190.058*
H14B0.72800.7627−0.24900.058*
C150.3826 (7)0.6632 (7)−0.3352 (4)0.0431 (12)
H15A0.40530.6045−0.28730.052*
H15B0.26380.5959−0.39380.052*
C160.3921 (8)0.8111 (8)−0.2659 (5)0.0489 (14)
H16A0.36230.8665−0.31470.059*
H16B0.30560.7812−0.23270.059*
O40.9439 (11)0.5634 (8)0.7796 (6)0.0490 (19)0.50
O51.0325 (17)0.4310 (17)0.6823 (12)0.126 (5)0.50
O60.8282 (11)0.3095 (10)0.7300 (8)0.063 (2)0.50
N40.9354 (9)0.4383 (9)0.7316 (5)0.046 (2)0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0328 (5)0.0316 (5)0.0269 (5)0.0082 (4)0.0117 (4)0.0128 (4)
Ni20.0337 (5)0.0332 (5)0.0259 (5)0.0042 (4)0.0075 (4)0.0122 (4)
F10.074 (2)0.0439 (19)0.0362 (17)0.0039 (17)0.0227 (16)0.0180 (15)
O10.0361 (19)0.040 (2)0.0340 (18)0.0079 (16)0.0113 (15)0.0198 (16)
O20.044 (2)0.050 (2)0.0309 (19)−0.0013 (18)0.0047 (16)0.0212 (18)
O30.0351 (19)0.045 (2)0.0303 (18)0.0017 (17)0.0050 (15)0.0163 (17)
O1w0.041 (2)0.051 (2)0.053 (2)0.0136 (19)0.0144 (18)0.024 (2)
O2w0.069 (7)0.093 (9)0.067 (7)0.037 (7)0.024 (6)0.024 (7)
O3w0.084 (4)0.093 (4)0.094 (4)0.050 (3)0.034 (3)0.028 (3)
N10.029 (2)0.041 (2)0.029 (2)0.0115 (18)0.0106 (16)0.0132 (18)
N20.064 (3)0.041 (3)0.028 (2)0.024 (2)0.018 (2)0.015 (2)
N30.046 (3)0.035 (2)0.034 (2)0.013 (2)0.0175 (19)0.0142 (19)
C10.037 (3)0.037 (3)0.028 (2)0.013 (2)0.013 (2)0.014 (2)
C20.035 (3)0.035 (3)0.027 (2)0.012 (2)0.0110 (19)0.013 (2)
C30.037 (3)0.040 (3)0.037 (3)0.015 (2)0.019 (2)0.020 (2)
C40.036 (3)0.033 (3)0.029 (2)0.015 (2)0.013 (2)0.014 (2)
C50.035 (2)0.033 (3)0.027 (2)0.013 (2)0.0120 (19)0.013 (2)
C60.035 (3)0.035 (3)0.031 (2)0.009 (2)0.012 (2)0.009 (2)
C70.048 (3)0.033 (3)0.034 (3)0.012 (2)0.018 (2)0.015 (2)
C80.048 (3)0.039 (3)0.031 (2)0.025 (2)0.017 (2)0.017 (2)
C90.037 (3)0.035 (3)0.027 (2)0.014 (2)0.0076 (19)0.010 (2)
C100.036 (3)0.034 (3)0.029 (2)0.017 (2)0.0125 (19)0.012 (2)
C110.029 (3)0.056 (3)0.037 (3)0.014 (2)0.007 (2)0.017 (3)
C120.056 (4)0.046 (4)0.069 (5)0.011 (3)0.009 (3)0.004 (3)
C130.072 (4)0.039 (3)0.031 (3)0.006 (3)0.022 (3)0.012 (2)
C140.045 (3)0.044 (3)0.033 (3)0.002 (3)0.019 (2)0.007 (2)
C150.044 (3)0.047 (3)0.033 (3)0.020 (3)0.015 (2)0.009 (2)
C160.062 (4)0.067 (4)0.032 (3)0.043 (3)0.017 (3)0.021 (3)
O40.062 (5)0.030 (4)0.038 (4)0.019 (3)0.006 (3)0.005 (3)
O50.126 (8)0.116 (8)0.138 (8)0.022 (5)0.098 (7)0.060 (7)
O60.057 (5)0.046 (5)0.080 (6)0.016 (4)0.029 (4)0.026 (4)
N40.044 (5)0.058 (5)0.048 (5)0.026 (4)0.018 (4)0.037 (4)

Geometric parameters (Å, °)

Ni1—O12.022 (3)C1—C21.492 (6)
Ni1—O1i2.022 (3)C2—C31.359 (7)
Ni1—O1w2.103 (4)C2—C41.430 (6)
Ni1—O1wi2.103 (4)C3—H30.9300
Ni1—N3ii2.157 (5)C4—C51.468 (6)
Ni1—N3iii2.157 (5)C5—C61.408 (6)
Ni2—O21.979 (4)C5—C101.411 (7)
Ni2—O2iv1.979 (4)C6—C71.345 (7)
Ni2—O3iv2.021 (3)C6—H60.9300
Ni2—O32.021 (3)C7—C81.418 (7)
Ni2—O3wiv2.108 (6)C8—C91.401 (7)
Ni2—O3w2.108 (6)C9—C101.390 (6)
F1—C71.352 (6)C9—H90.9300
O1—C11.260 (6)C11—C121.496 (10)
O2—C11.247 (6)C11—H11A0.9700
O3—C41.256 (6)C11—H11B0.9700
O1w—H1w10.8501C12—H12A0.9600
O1w—H1w20.8500C12—H12B0.9600
O2w—O2wv1.088 (8)C12—H12C0.9600
O2w—H2w0.8500C13—C141.511 (9)
O3w—H3w10.8501C13—H13A0.9700
O3w—H3w20.8501C13—H13B0.9700
N1—C31.343 (6)C14—H14A0.9700
N1—C101.398 (6)C14—H14B0.9700
N1—C111.486 (6)C15—C161.509 (8)
N2—C81.387 (6)C15—H15A0.9700
N2—C161.463 (7)C15—H15B0.9700
N2—C131.469 (7)C16—H16A0.9700
N2—H2n0.8600C16—H16B0.9700
N3—C141.485 (7)O4—N41.225 (8)
N3—C151.493 (7)O5—N41.241 (9)
N3—Ni1vi2.157 (5)O6—N41.237 (8)
N3—H3n0.8600
O1—Ni1—O1i180.000 (1)N1—C3—H3117.3
O1—Ni1—O1w94.08 (14)C2—C3—H3117.3
O1i—Ni1—O1w85.92 (14)O3—C4—C2126.4 (4)
O1—Ni1—O1wi85.92 (14)O3—C4—C5118.6 (4)
O1i—Ni1—O1wi94.08 (14)C2—C4—C5115.0 (4)
O1w—Ni1—O1wi180.0C6—C5—C10117.4 (4)
O1—Ni1—N3iii89.36 (15)C6—C5—C4120.4 (4)
O1i—Ni1—N3iii90.64 (15)C10—C5—C4122.2 (4)
O1w—Ni1—N3iii87.36 (16)C7—C6—C5120.7 (5)
O1wi—Ni1—N3iii92.64 (16)C7—C6—H6119.7
O1—Ni1—N3ii90.64 (15)C5—C6—H6119.7
O1i—Ni1—N3ii89.36 (15)C6—C7—F1117.3 (5)
O1w—Ni1—N3ii92.64 (16)C6—C7—C8123.8 (4)
O1wi—Ni1—N3ii87.36 (16)F1—C7—C8118.8 (4)
N3iii—Ni1—N3ii180.0 (2)N2—C8—C9122.3 (5)
O2iv—Ni2—O2180.0N2—C8—C7122.3 (4)
O2iv—Ni2—O3iv91.12 (14)C9—C8—C7115.3 (4)
O2—Ni2—O3iv88.88 (14)C10—C9—C8122.0 (5)
O2iv—Ni2—O388.88 (14)C10—C9—H9119.0
O2—Ni2—O391.12 (14)C8—C9—H9119.0
O3iv—Ni2—O3180.000 (1)C9—C10—N1121.5 (4)
O2iv—Ni2—O3wiv91.8 (2)C9—C10—C5120.7 (4)
O2—Ni2—O3wiv88.2 (2)N1—C10—C5117.8 (4)
O3iv—Ni2—O3wiv92.6 (2)N1—C11—C12111.7 (5)
O3—Ni2—O3wiv87.4 (2)N1—C11—H11A109.3
O2iv—Ni2—O3w88.2 (2)C12—C11—H11A109.3
O2—Ni2—O3w91.8 (2)N1—C11—H11B109.3
O3iv—Ni2—O3w87.4 (2)C12—C11—H11B109.3
O3—Ni2—O3w92.6 (2)H11A—C11—H11B107.9
O3wiv—Ni2—O3w180.000 (3)C11—C12—H12A109.5
C1—O1—Ni1128.4 (3)C11—C12—H12B109.5
C1—O2—Ni2130.1 (3)H12A—C12—H12B109.5
C4—O3—Ni2125.3 (3)C11—C12—H12C109.5
Ni1—O1w—H1w1109.5H12A—C12—H12C109.5
Ni1—O1w—H1w2109.5H12B—C12—H12C109.5
H1w1—O1w—H1w2109.5N2—C13—C14110.9 (4)
O2wv—O2w—H2w138.4N2—C13—H13A109.5
Ni2—O3w—H3w1109.5C14—C13—H13A109.5
Ni2—O3w—H3w2109.4N2—C13—H13B109.5
H3w1—O3w—H3w2109.5C14—C13—H13B109.5
C3—N1—C10119.8 (4)H13A—C13—H13B108.0
C3—N1—C11118.1 (4)N3—C14—C13113.3 (5)
C10—N1—C11122.0 (4)N3—C14—H14A108.9
C8—N2—C16120.9 (4)C13—C14—H14A108.9
C8—N2—C13122.5 (5)N3—C14—H14B108.9
C16—N2—C13109.1 (4)C13—C14—H14B108.9
C8—N2—H2n99.1H14A—C14—H14B107.7
C16—N2—H2n99.1N3—C15—C16111.8 (5)
C13—N2—H2n99.1N3—C15—H15A109.2
C14—N3—C15108.2 (4)C16—C15—H15A109.2
C14—N3—Ni1vi115.0 (4)N3—C15—H15B109.2
C15—N3—Ni1vi115.5 (3)C16—C15—H15B109.2
C14—N3—H3n105.7H15A—C15—H15B107.9
C15—N3—H3n105.7N2—C16—C15111.5 (5)
Ni1vi—N3—H3n105.7N2—C16—H16A109.3
O2—C1—O1122.5 (4)C15—C16—H16A109.3
O2—C1—C2121.2 (4)N2—C16—H16B109.3
O1—C1—C2116.2 (4)C15—C16—H16B109.3
C3—C2—C4119.6 (4)H16A—C16—H16B108.0
C3—C2—C1115.7 (4)O4—N4—O6121.5 (9)
C4—C2—C1124.6 (4)O4—N4—O5123.2 (10)
N1—C3—C2125.4 (4)O6—N4—O5115.3 (10)
O1w—Ni1—O1—C1−20.5 (5)C4—C5—C6—C7177.4 (5)
O1wi—Ni1—O1—C1159.5 (5)C5—C6—C7—F1175.2 (5)
N3iii—Ni1—O1—C1−107.8 (5)C5—C6—C7—C8−1.0 (9)
N3ii—Ni1—O1—C172.2 (5)C16—N2—C8—C92.1 (8)
O3iv—Ni2—O2—C1168.0 (5)C13—N2—C8—C9−144.4 (5)
O3—Ni2—O2—C1−12.0 (5)C16—N2—C8—C7−174.0 (5)
O3wiv—Ni2—O2—C175.3 (6)C13—N2—C8—C739.5 (8)
O3w—Ni2—O2—C1−104.7 (6)C6—C7—C8—N2179.2 (5)
O2iv—Ni2—O3—C4−170.1 (5)F1—C7—C8—N23.0 (8)
O2—Ni2—O3—C49.9 (5)C6—C7—C8—C92.9 (8)
O3wiv—Ni2—O3—C4−78.3 (5)F1—C7—C8—C9−173.3 (5)
O3w—Ni2—O3—C4101.7 (5)N2—C8—C9—C10−177.4 (5)
Ni2—O2—C1—O1−172.1 (4)C7—C8—C9—C10−1.0 (8)
Ni2—O2—C1—C27.9 (8)C8—C9—C10—N1178.8 (5)
Ni1—O1—C1—O2−6.5 (8)C8—C9—C10—C5−2.6 (8)
Ni1—O1—C1—C2173.5 (3)C3—N1—C10—C9174.9 (5)
O2—C1—C2—C3178.7 (5)C11—N1—C10—C9−1.6 (8)
O1—C1—C2—C3−1.2 (7)C3—N1—C10—C5−3.7 (7)
O2—C1—C2—C42.5 (8)C11—N1—C10—C5179.7 (5)
O1—C1—C2—C4−177.5 (5)C6—C5—C10—C94.4 (7)
C10—N1—C3—C22.2 (8)C4—C5—C10—C9−175.7 (5)
C11—N1—C3—C2178.9 (5)C6—C5—C10—N1−177.0 (5)
C4—C2—C3—N10.3 (9)C4—C5—C10—N13.0 (7)
C1—C2—C3—N1−176.1 (5)C3—N1—C11—C12−89.1 (6)
Ni2—O3—C4—C2−4.4 (8)C10—N1—C11—C1287.5 (6)
Ni2—O3—C4—C5176.5 (3)C8—N2—C13—C1492.7 (6)
C3—C2—C4—O3179.8 (5)C16—N2—C13—C14−57.2 (6)
C1—C2—C4—O3−4.1 (9)C15—N3—C14—C13−53.8 (5)
C3—C2—C4—C5−1.0 (7)Ni1vi—N3—C14—C13175.4 (3)
C1—C2—C4—C5175.1 (5)N2—C13—C14—N356.8 (6)
O3—C4—C5—C6−1.4 (8)C14—N3—C15—C1654.0 (6)
C2—C4—C5—C6179.3 (5)Ni1vi—N3—C15—C16−175.4 (3)
O3—C4—C5—C10178.6 (5)C8—N2—C16—C15−91.7 (6)
C2—C4—C5—C10−0.7 (7)C13—N2—C16—C1558.7 (6)
C10—C5—C6—C7−2.6 (8)N3—C15—C16—N2−58.6 (6)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y, z+1; (iii) −x+1, −y+1, −z; (iv) −x+2, −y+2, −z+1; (v) −x+3, −y+2, −z+1; (vi) x, y, z−1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O40.852.162.820 (8)135
O1w—H1w2···O20.851.972.700 (5)143
O2w—H2w···O6vii0.852.172.90 (1)145
O3w—H3w1···O2w0.852.092.699 (7)128
O3w—H3w2···O5vii0.851.962.77 (2)161
N3—H3n···O2wviii0.862.433.277 (6)171

Symmetry codes: (vii) −x+2, −y+1, −z+1; (viii) x−1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2663).

References

  • Barbas, R., Prohens, R. & Puigjaner, C. (2007). J. Therm. Anal. Calor.89, 687–692.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2004). APEX2 (Version 2.0.23A) and SAINT (Version 7.23A). Bruker AXS Inc, Madison, Wisconsin, USA.
  • Florence, A. J., Kennedy, A. R., Shankland, N., Wright, E. & Al-Rubayi, A. (2000). Acta Cryst. C56, 1372–1373. [PubMed]
  • Goldstein, E. (1987). Am. J. Med.82, 3–17. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Westrip, S. P. (2008). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography