PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m61.
Published online 2007 December 6. doi:  10.1107/S1600536807062800
PMCID: PMC2914943

catena-Poly[[[triaqua­copper(II)]-μ2-pyrazine-2,3-dicarboxyl­ato] monohydrate]

Abstract

The Cu atom in the title complex, {[Cu(C6H2N2O4)(H2O)3]·H2O}n or {[Cu(L)(H2O)3]·H2O}n (L is pyrazine-2,3-dicarbox­yl­ate), displays octa­hedral coordination formed by the ligand L and three coordinated water mol­ecules. The ligand L is tridentate, with one N atom of the pyrazine ring and one O atom of one carboxyl­ate group forming a chelate ring, whereas one O atom from the second carboxyl­ate group is coordinated to another Cu atom. The ligand L links mol­ecules to form an infinite chain parallel to the [101] direction. The chains are further linked through O—H(...)O and O—H(...)N hydrogen bonds involving the water mol­ecules to build up a three-dimensional network.

Related literature

For related literature, see: Gokel et al. (2004 [triangle]); Shan et al. (2001 [triangle]); Starosta & Leciejewicz (2005 [triangle]); Takusagawa & Shimada (1973 [triangle]); Tombul et al. (2007 [triangle]); Ptasiewicz-Bak & Leciejewicz (1997a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00m61-scheme1.jpg

Experimental

Crystal data

  • [Cu(C6H2N2O4)(H2O)3]·H2O
  • M r = 301.70
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00m61-efi5.jpg
  • a = 8.4254 (4) Å
  • b = 18.0692 (8) Å
  • c = 7.4187 (3) Å
  • β = 114.4120 (10)°
  • V = 1028.45 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.16 mm−1
  • T = 298 (2) K
  • 0.28 × 0.25 × 0.17 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.519, T max = 0.660
  • 3079 measured reflections
  • 1683 independent reflections
  • 1654 reflections with I > 2σ(I)
  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.089
  • S = 1.11
  • 1683 reflections
  • 156 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.67 e Å−3
  • Δρmin = −1.08 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 758 Friedel pairs
  • Flack parameter: −0.04 (2)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062800/dn2285sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062800/dn2285Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Sichuan University for financial support.

supplementary crystallographic information

Comment

Transition metal complexes with bipyridine derivatives are suitable models for the study of excited state dynamics. In addition, they are of interest for the development of light-energy conversion devices and optical sensors (Gokel et al., 2004; Shan et al., 2001). Since the single-crystal X-ray analysis of pyrazine-2,3 dicarboxylic acid was first determined (Takusagawa & Shimada, 1973), a variety of metal-organic compounds of pyrazine-2,3-dicarboxylic acid have been characterized crystallographically, due to growing interest in supramolecular chemistry (Tombul et al., 2007). These include the calcium (Ptasiewicz-Bak & Leciejewicz, 1997a; Starosta & Leciejewicz, 2005) and magnesium (Ptasiewicz-Bak & Leciejewicz, 1997b) complexes. In this paper, we report the synthesis and crystal structure of the title complex,(I).

The CuII ion displays octahedral coordination formed by the one L ligand and three coordinated water molecules. The ligand L is tridentate with the N atom of the pyridine ring and one O atom of one carboxylate forming a chelate ring whereas one O atom from the second carboxylate is coordinated to another Cu atom (Fig. 1). Then the ligand L links molecules to form an infinite chain parallel to the [1 O 1] direction. The chains are further linked through O—H···O and O—H···N involving the water molecules to build up a three dimensionnal network (Table 1).

Experimental

L (0.031 g, 0.018 mmol), CuSO4 (0.018 g, 0.016 mmol) and NaOH(0.048 mmol,0.12 mmol), were added in a mixed solvent of ethanol, the mixture was heated for three hours under reflux. during the process stirring and influx were required. The resultant was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel, two weeks later some single crystals of the size suitable for X-Ray diffraction analysis.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H= 0.85 (1)Å and H···H= 1.39 (2) Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement, they were treated as riding on their parent O atoms.

Figures

Fig. 1.
View of compound (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x - 1/2, 1/2 - y, z - 1/2; (ii) 1/2 + x, 1/2 - y, 1/2 + z]

Crystal data

[Cu(C6H2N2O4)(H2O)3]·H2OF000 = 612
Mr = 301.70Dx = 1.949 Mg m3
Monoclinic, CcMo Kα radiation λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1683 reflections
a = 8.4254 (4) Åθ = 2.3–25.2º
b = 18.0692 (8) ŵ = 2.16 mm1
c = 7.4187 (3) ÅT = 298 (2) K
β = 114.4120 (10)ºBlock, blue
V = 1028.45 (8) Å30.28 × 0.25 × 0.17 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer1683 independent reflections
Radiation source: fine-focus sealed tube1654 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.067
T = 298(2) Kθmax = 25.2º
[var phi] and ω scanθmin = 2.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004)h = −10→9
Tmin = 0.519, Tmax = 0.660k = −21→20
3079 measured reflectionsl = −8→8

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036  w = 1/[σ2(Fo2) + (0.0632P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.67 e Å3
1683 reflectionsΔρmin = −1.08 e Å3
156 parametersExtinction correction: none
2 restraintsAbsolute structure: Flack (1983), 758 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.04 (2)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.89418 (3)0.118643 (19)0.89933 (3)0.02206 (17)
N10.6873 (5)0.18186 (18)0.9306 (5)0.0277 (8)
N20.4368 (5)0.2821 (2)0.9255 (5)0.0289 (10)
O10.9124 (6)0.34477 (15)0.9145 (8)0.0380 (8)
O20.9816 (4)0.22606 (16)0.9101 (5)0.0311 (7)
O30.5382 (5)0.40933 (18)0.6974 (4)0.0347 (8)
O40.6390 (5)0.42851 (17)1.0176 (4)0.0346 (7)
O50.7715 (5)0.01798 (16)0.8841 (6)0.0428 (8)
H5A0.8168−0.00800.98720.064*
H5B0.66180.01100.82020.064*
O61.1011 (4)0.07381 (17)0.8605 (4)0.0314 (7)
H6A1.11200.02920.90210.047*
H6B1.10000.07800.74710.047*
O70.7584 (5)0.12285 (15)0.5794 (5)0.0302 (8)
H7A0.81410.15100.53790.039 (15)*
H7B0.65010.12500.52490.033 (16)*
C10.8817 (8)0.2773 (2)0.9095 (8)0.0247 (9)
C20.7074 (6)0.2543 (2)0.9108 (6)0.0229 (9)
C30.5804 (6)0.3047 (2)0.9043 (6)0.0232 (9)
C40.4209 (6)0.2097 (3)0.9474 (6)0.0328 (10)
H40.32370.19270.96420.039*
C50.5417 (6)0.1592 (2)0.9461 (6)0.0322 (10)
H50.52270.10890.95610.039*
C70.5890 (6)0.3869 (2)0.8690 (7)0.0226 (9)
O80.4396 (6)−0.0183 (3)0.7257 (8)0.0755 (15)
H8A0.35370.00990.66420.113*
H8B0.4043−0.06010.74630.113*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0207 (2)0.0188 (2)0.0264 (2)0.0014 (2)0.00942 (17)−0.00095 (19)
N10.028 (2)0.0247 (17)0.0301 (16)−0.0003 (15)0.0116 (15)0.0023 (14)
N20.023 (3)0.0329 (18)0.031 (2)−0.0011 (14)0.0125 (18)−0.0029 (15)
O10.0243 (17)0.0237 (14)0.065 (2)−0.0024 (14)0.0179 (14)0.0017 (17)
O20.0231 (17)0.0236 (14)0.0479 (16)0.0006 (13)0.0160 (14)−0.0014 (13)
O30.0441 (19)0.0313 (16)0.0264 (15)−0.0016 (15)0.0122 (13)0.0034 (12)
O40.049 (2)0.0275 (14)0.0286 (14)−0.0017 (14)0.0175 (14)−0.0071 (12)
O50.0312 (17)0.0303 (16)0.0567 (19)−0.0052 (14)0.0080 (14)0.0110 (15)
O60.0317 (16)0.0314 (14)0.0324 (13)0.0075 (14)0.0145 (12)0.0045 (13)
O70.0225 (18)0.0338 (18)0.0320 (19)−0.0006 (11)0.0088 (15)0.0049 (11)
C10.020 (2)0.0256 (18)0.0268 (16)−0.004 (2)0.0080 (14)−0.0001 (18)
C20.022 (2)0.0225 (19)0.0215 (17)−0.0037 (16)0.0063 (15)−0.0012 (14)
C30.019 (2)0.027 (2)0.0194 (16)−0.0031 (16)0.0039 (14)−0.0017 (15)
C40.029 (3)0.035 (2)0.042 (3)−0.009 (2)0.023 (2)−0.0048 (16)
C50.034 (3)0.0257 (19)0.039 (2)−0.0028 (19)0.0162 (18)−0.0010 (17)
C70.020 (2)0.025 (2)0.024 (2)0.0004 (15)0.0112 (17)−0.0018 (14)
O80.031 (2)0.062 (3)0.102 (3)−0.0071 (18)−0.004 (2)0.021 (2)

Geometric parameters (Å, °)

Cu1—O62.048 (3)O5—H5A0.8422
Cu1—O22.066 (3)O5—H5B0.8559
Cu1—O52.072 (3)O6—H6A0.8539
Cu1—O3i2.098 (3)O6—H6B0.8410
Cu1—O72.169 (4)O7—H7A0.8328
Cu1—N12.175 (4)O7—H7B0.8323
N1—C21.335 (5)C1—C21.530 (7)
N1—C51.343 (7)C2—C31.391 (6)
N2—C41.332 (6)C3—C71.515 (5)
N2—C31.347 (6)C4—C51.369 (7)
O1—C11.244 (5)C4—H40.9300
O2—C11.249 (6)C5—H50.9300
O3—C71.232 (6)O8—H8A0.8483
O3—Cu1ii2.098 (3)O8—H8B0.8472
O4—C71.255 (5)
O6—Cu1—O293.81 (13)Cu1—O6—H6B116.5
O6—Cu1—O594.56 (15)H6A—O6—H6B113.7
O2—Cu1—O5171.41 (14)Cu1—O7—H7A107.6
O6—Cu1—O3i84.14 (13)Cu1—O7—H7B120.6
O2—Cu1—O3i98.28 (13)H7A—O7—H7B117.6
O5—Cu1—O3i84.50 (14)O1—C1—O2126.5 (6)
O6—Cu1—O787.38 (13)O1—C1—C2117.0 (5)
O2—Cu1—O791.59 (12)O2—C1—C2116.5 (4)
O5—Cu1—O786.87 (14)N1—C2—C3121.0 (4)
O3i—Cu1—O7167.38 (13)N1—C2—C1115.6 (4)
O6—Cu1—N1171.52 (13)C3—C2—C1123.2 (4)
O2—Cu1—N177.94 (13)N2—C3—C2120.8 (4)
O5—Cu1—N193.62 (15)N2—C3—C7115.3 (4)
O3i—Cu1—N198.85 (14)C2—C3—C7123.9 (4)
O7—Cu1—N190.86 (14)N2—C4—C5122.8 (5)
C2—N1—C5118.1 (4)N2—C4—H4118.6
C2—N1—Cu1111.0 (3)C5—C4—H4118.6
C5—N1—Cu1130.5 (3)N1—C5—C4120.3 (4)
C4—N2—C3116.9 (4)N1—C5—H5119.8
C1—O2—Cu1117.8 (3)C4—C5—H5119.8
C7—O3—Cu1ii144.4 (3)O3—C7—O4123.9 (4)
Cu1—O5—H5A114.2O3—C7—C3118.7 (4)
Cu1—O5—H5B124.0O4—C7—C3117.3 (4)
H5A—O5—H5B113.7H8A—O8—H8B110.3
Cu1—O6—H6A107.0

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···O7iii0.842.302.953 (4)134
O5—H5B···O80.861.792.630 (6)168
O6—H6A···O4iv0.851.982.837 (4)176
O6—H6A···O3iv0.852.573.170 (5)128
O6—H6B···O4v0.841.872.691 (4)167
O7—H7A···N2v0.831.982.817 (5)177
O7—H7B···O1ii0.831.902.719 (6)166
O8—H8A···O4ii0.852.022.864 (6)176
O8—H8B···O1vi0.852.112.898 (6)155

Symmetry codes: (iii) x, −y, z+1/2; (iv) x+1/2, y−1/2, z; (v) x+1/2, −y+1/2, z−1/2; (ii) x−1/2, −y+1/2, z−1/2; (vi) x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2285).

References

  • Bruker (2004). APEX2 (Version 1.22) and SAINT (Version 6.36A). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gokel, G. W., Leevy, W. M. & Weber, W. E. (2004). Chem. Rev.104, 2723–2750. [PubMed]
  • Ptasiewicz-Bak, H. & Leciejewicz, J. (1997a). Pol. J. Chem.71, 493–500.
  • Ptasiewicz-Bak, H. & Leciejewicz, J. (1997b). Pol. J. Chem.71, 1603–1610.
  • Shan, B. Z., Zhao, O., Goswami, N., Eichhorn, D. M. & Rillema, D. P. (2001). Coord. Chem. Rev.211, 117–144.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Starosta, W. & Leciejewicz, J. (2005). J. Coord. Chem.58, 963–968.
  • Takusagawa, T. & Shimada, A. (1973). Chem. Lett. pp. 1121–1126.
  • Tombul, M., Güven, K. & Büyükgüngör, O. (2007). Acta Cryst. E63, m1783–m1784.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography