PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m59–m60.
Published online 2007 December 6. doi:  10.1107/S1600536807062745
PMCID: PMC2914942

trans-Bis[2-(piperazin-1-yl)­ethan­amine]­bis­(saccharinato)cobalt(II)

Abstract

In the centrosymmetric title complex, [Co(C7H4NO3S)2(C6H15N3)2], the CoII ion is coordinated by two saccharinate (sac) anions and two neutral 2-piperazin-1-ylethanamine (ppzea) ligands, showing a distorted octa­hedral coordination. Sac is O-bonded via the carbonyl group, while ppzea acts as an N,N′-bidentate chelating ligand. The mol­ecules are connected by N—H(...)N and N—H(...)O hydrogen bonds, forming a linear chain running parallel to the crystallographic a axis. The compound is isostructural with the reported Ni, Zn, and Cd analogues.

Related literature

For the structures of the analogous Ni, Zn, and Cd complexes, see: Guney et al. (2005 [triangle]); Yilmaz et al. (2005 [triangle]). For a review of saccharinate complexes, see: Baran & Yilmaz (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00m59-scheme1.jpg

Experimental

Crystal data

  • [Co(C7H4NO3S)2(C6H15N3)2]
  • M r = 681.69
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00m59-efi1.jpg
  • a = 8.4294 (7) Å
  • b = 9.3742 (10) Å
  • c = 11.5618 (10) Å
  • α = 93.651 (8)°
  • β = 110.473 (6)°
  • γ = 116.486 (13)°
  • V = 739.31 (17) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.78 mm−1
  • T = 293 (2) K
  • 0.58 × 0.41 × 0.25 mm

Data collection

  • Stoe IPDS 2 diffractometer
  • Absorption correction: integration (X-RED; Stoe & Cie, 2002 [triangle]) T min = 0.721, T max = 0.865
  • 9652 measured reflections
  • 2913 independent reflections
  • 2635 reflections with I > 2σ(I)
  • R int = 0.103

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.094
  • S = 1.07
  • 2913 reflections
  • 208 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.64 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062745/sq2006sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062745/sq2006Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The saccharinate (sac) anion is formed by the deprotonation of saccharin and coordinates to various metal ions rather easily (Baran & Yilmaz 2006). In the course of the synthesis and structural characterization of mixed ligand–metal complexes of sac, recently we reported nickel(II), zinc(II) and cadmium(II) complexes of sac with 2-piperazin-1-ylethanamine (ppzea) (Guney et al., 2005; Yilmaz et al., 2005). In this paper, the crystal and molecular structure of the isomorphous sac complex of cobalt(II) with ppzea (I) is reported.

The title complex (I) is isostructural with the nickel(II), zinc(II) and cadmium(II) complexes of the same ligands (Guney et al., 2005; Yilmaz et al., 2005) and shows similar structural characteristics. In these isostructural complexes, the MII ions show an elongated octahedral geometry, possibly due to a poor overlap of the sp3 lone pair on the N atom of ppz with the valence orbitals of the metal ions. As shown in Fig. 1, (I) is a mononuclear CoII complex, in which the CoII ion lies on a centre of inversion and also exhibits an elongated distorted octahedral geometry with two neutral bidendate (N,N') ppzea ligands and two anionic sac ligands. In spite of the common N-coordination mode, sac coordinates to CoII through the carbonyl O atom. The puckering parameters of the ppz ring system in (I) are q = 0.538 (2)Å and Θ = 5.4 (2)°, suggesting that the ppz rings exhibit a typical (e.g., cyclohexane-like) chair conformation.

The amine hydrogen atoms of ppzea form intramolecular hydrogen bonds with the negatively charged N atom of sac. The individual molecules are linked by N—H···N and N—H···O hydrogen bonds, involving the amine H atoms of ppzea and the ring N atom of ppzea and the sulfonyl O atoms of sac, forming a linear chain running paralel to the crystallographic a axis.

Experimental

A 20 ml e thanol solution containing ppzea (0.26 g, 2 mmol) and sacH (0.36 g, 2 mmol) was mixed with a 20 ml e thanol solution of Co(OAc)2.4H2O (0.25 g, 1 mmol). The reaction solution was stirred for 1 h at room temperature. Red-brown prisms were obtained after 5 days by slow evaporation of the solution at room temperature.

Refinement

All N-bonded H atoms were refined freely, while C-bonded H atoms were placed in idealized locations (C—H = 0.95 Å) and included as riding atoms with Uiso(H) = 1.2*Ueq(C). The instruction DFIX was applied to the N4—H4A bond to increase its length to a reasonable value.

Figures

Fig. 1.
The molecular structure of (I) showing 30% displacement ellipsoids (arbitrary spheres for the H atoms). Symmetry code: (i) -x + 1, -y + 1, -z + 1. The intramolecular N—H···N hydrogen bonds are indicated by dashed lines. ...

Crystal data

[Co(C7H4NO3S)2(C6H15N3)2]Z = 1
Mr = 681.69F000 = 357
Triclinic, P1Dx = 1.531 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.4294 (7) ÅCell parameters from 16784 reflections
b = 9.3742 (10) Åθ = 2.0–28.0º
c = 11.5618 (10) ŵ = 0.78 mm1
α = 93.651 (8)ºT = 293 (2) K
β = 110.473 (6)ºPrism, light brown
γ = 116.486 (13)º0.58 × 0.41 × 0.25 mm
V = 739.31 (17) Å3

Data collection

Stoe IPDS 2 diffractometer2913 independent reflections
Radiation source: fine-focus sealed tube2635 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.103
Detector resolution: 6.67 pixels mm-1θmax = 26.0º
T = 293(2) Kθmin = 2.0º
rotation method scansh = −10→10
Absorption correction: integration(X-RED; Stoe & Cie, 2002)k = −10→11
Tmin = 0.721, Tmax = 0.865l = −14→14
9652 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094  w = 1/[σ2(Fo2) + (0.0416P)2 + 0.1493P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2913 reflectionsΔρmax = 0.47 e Å3
208 parametersΔρmin = −0.64 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.50000.50000.50000.02842 (12)
S10.60105 (7)0.20581 (6)0.86106 (4)0.03467 (14)
O10.4721 (2)0.46565 (17)0.67018 (13)0.0386 (3)
O20.7830 (2)0.2754 (2)0.97136 (15)0.0540 (4)
O30.5203 (3)0.03573 (19)0.79884 (17)0.0557 (4)
N10.6138 (2)0.3163 (2)0.75875 (16)0.0379 (4)
N20.4126 (2)0.6783 (2)0.50483 (16)0.0324 (3)
N30.8077 (2)0.73527 (18)0.62659 (14)0.0312 (3)
N41.1486 (2)0.7105 (2)0.6325 (2)0.0498 (5)
C10.4967 (3)0.3785 (2)0.74533 (16)0.0313 (4)
C20.3873 (3)0.3351 (2)0.82672 (17)0.0311 (4)
C30.4282 (3)0.2328 (2)0.89749 (17)0.0332 (4)
C40.3404 (3)0.1714 (3)0.9774 (2)0.0441 (5)
H40.36930.10301.02510.053*
C50.2076 (3)0.2162 (3)0.9835 (2)0.0501 (5)
H50.14370.17521.03520.060*
C60.1672 (3)0.3207 (3)0.9146 (2)0.0508 (5)
H60.07900.35080.92190.061*
C70.2570 (3)0.3805 (3)0.8352 (2)0.0436 (5)
H70.22980.45020.78840.052*
C80.5815 (3)0.8468 (2)0.5672 (2)0.0379 (4)
H8A0.54280.91660.60170.046*
H8B0.62770.89340.50520.046*
C90.7420 (3)0.8403 (2)0.67326 (19)0.0381 (4)
H9A0.85240.95140.71500.046*
H9B0.69570.79760.73630.046*
C100.9221 (3)0.8211 (2)0.5561 (2)0.0405 (4)
H10A1.02260.93210.60820.049*
H10B0.83650.82970.47850.049*
C111.0174 (3)0.7314 (3)0.5215 (2)0.0475 (5)
H11A0.91590.62340.46420.057*
H11B1.09100.79250.47590.057*
C121.0468 (3)0.6362 (3)0.7102 (2)0.0448 (5)
H12A1.14100.63980.78980.054*
H12B0.95250.52100.66570.054*
C130.9411 (3)0.7169 (3)0.74108 (18)0.0390 (4)
H13A0.86580.65150.78420.047*
H13B1.03710.82530.79970.047*
H2A0.348 (3)0.681 (3)0.424 (2)0.043 (6)*
H2B0.337 (3)0.655 (3)0.543 (2)0.040 (6)*
H4A1.244 (3)0.804 (2)0.677 (3)0.064 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0362 (2)0.03155 (19)0.02755 (19)0.02107 (15)0.01746 (14)0.01371 (14)
S10.0412 (3)0.0402 (3)0.0304 (2)0.0253 (2)0.0159 (2)0.01366 (19)
O10.0519 (8)0.0450 (7)0.0335 (7)0.0294 (6)0.0246 (6)0.0217 (6)
O20.0454 (8)0.0778 (11)0.0397 (8)0.0367 (8)0.0107 (7)0.0189 (8)
O30.0727 (10)0.0430 (8)0.0596 (10)0.0346 (8)0.0296 (8)0.0114 (7)
N10.0430 (8)0.0491 (9)0.0348 (8)0.0276 (7)0.0228 (7)0.0197 (7)
N20.0360 (8)0.0385 (8)0.0332 (8)0.0238 (7)0.0178 (7)0.0141 (7)
N30.0333 (7)0.0337 (7)0.0310 (7)0.0190 (6)0.0150 (6)0.0102 (6)
N40.0321 (9)0.0534 (11)0.0560 (12)0.0198 (8)0.0152 (8)−0.0008 (9)
C10.0357 (9)0.0347 (8)0.0249 (8)0.0176 (7)0.0141 (7)0.0094 (7)
C20.0333 (8)0.0336 (8)0.0267 (8)0.0158 (7)0.0139 (7)0.0096 (7)
C30.0369 (9)0.0344 (9)0.0288 (9)0.0169 (7)0.0154 (7)0.0104 (7)
C40.0558 (12)0.0434 (10)0.0360 (10)0.0218 (10)0.0251 (9)0.0181 (9)
C50.0530 (12)0.0553 (12)0.0423 (11)0.0178 (10)0.0330 (10)0.0128 (10)
C60.0481 (12)0.0639 (14)0.0501 (13)0.0302 (11)0.0289 (10)0.0108 (11)
C70.0504 (11)0.0519 (11)0.0425 (11)0.0327 (10)0.0239 (9)0.0181 (9)
C80.0467 (10)0.0328 (9)0.0447 (11)0.0256 (8)0.0222 (9)0.0134 (8)
C90.0427 (10)0.0347 (9)0.0366 (10)0.0208 (8)0.0155 (8)0.0037 (8)
C100.0393 (10)0.0368 (9)0.0458 (11)0.0156 (8)0.0226 (8)0.0144 (8)
C110.0425 (11)0.0496 (12)0.0512 (12)0.0181 (9)0.0280 (9)0.0087 (10)
C120.0377 (10)0.0491 (11)0.0437 (11)0.0267 (9)0.0077 (8)0.0057 (9)
C130.0378 (10)0.0454 (10)0.0320 (9)0.0229 (8)0.0104 (8)0.0086 (8)

Geometric parameters (Å, °)

Co1—O1i2.0897 (13)C3—C41.378 (3)
Co1—O12.0897 (13)C4—C51.380 (3)
Co1—N2i2.1101 (16)C4—H40.9300
Co1—N22.1101 (16)C5—C61.385 (4)
Co1—N32.3589 (16)C5—H50.9300
Co1—N3i2.3589 (16)C6—C71.379 (3)
S1—O21.4274 (15)C6—H60.9300
S1—O31.4376 (16)C7—H70.9300
S1—N11.6214 (16)C8—C91.504 (3)
S1—C31.763 (2)C8—H8A0.9700
O1—C11.257 (2)C8—H8B0.9700
N1—C11.326 (3)C9—H9A0.9700
N2—C81.474 (2)C9—H9B0.9700
N2—H2A0.91 (3)C10—C111.515 (3)
N2—H2B0.85 (3)C10—H10A0.9700
N3—C101.478 (3)C10—H10B0.9700
N3—C91.482 (2)C11—H11A0.9700
N3—C131.485 (2)C11—H11B0.9700
N4—C121.454 (3)C12—C131.512 (3)
N4—C111.463 (3)C12—H12A0.9700
N4—H4A0.838 (17)C12—H12B0.9700
C1—C21.490 (3)C13—H13A0.9700
C2—C71.373 (3)C13—H13B0.9700
C2—C31.380 (2)
O1i—Co1—O1180.000 (1)C3—C4—H4121.5
O1i—Co1—N2i88.47 (6)C5—C4—H4121.5
O1—Co1—N2i91.53 (6)C4—C5—C6121.7 (2)
O1i—Co1—N291.53 (6)C4—C5—H5119.2
O1—Co1—N288.47 (6)C6—C5—H5119.2
N2i—Co1—N2180.000 (1)C7—C6—C5120.3 (2)
O1i—Co1—N392.94 (6)C7—C6—H6119.9
O1—Co1—N387.06 (6)C5—C6—H6119.9
N2i—Co1—N399.38 (6)C2—C7—C6118.75 (19)
N2—Co1—N380.62 (6)C2—C7—H7120.6
O1i—Co1—N3i87.06 (5)C6—C7—H7120.6
O1—Co1—N3i92.94 (6)N2—C8—C9109.12 (15)
N2i—Co1—N3i80.62 (6)N2—C8—H8A109.9
N2—Co1—N3i99.38 (6)C9—C8—H8A109.9
N3—Co1—N3i180.0N2—C8—H8B109.9
O2—S1—O3114.88 (11)C9—C8—H8B109.9
O2—S1—N1111.71 (10)H8A—C8—H8B108.3
O3—S1—N1110.32 (10)N3—C9—C8112.44 (16)
O2—S1—C3110.86 (10)N3—C9—H9A109.1
O3—S1—C3110.47 (10)C8—C9—H9A109.1
N1—S1—C397.23 (9)N3—C9—H9B109.1
C1—O1—Co1136.88 (13)C8—C9—H9B109.1
C1—N1—S1110.72 (14)H9A—C9—H9B107.8
C8—N2—Co1112.04 (11)N3—C10—C11111.99 (17)
C8—N2—H2A105.0 (14)N3—C10—H10A109.2
Co1—N2—H2A110.7 (16)C11—C10—H10A109.2
C8—N2—H2B110.3 (16)N3—C10—H10B109.2
Co1—N2—H2B110.0 (16)C11—C10—H10B109.2
H2A—N2—H2B109 (2)H10A—C10—H10B107.9
C10—N3—C9109.30 (15)N4—C11—C10113.47 (19)
C10—N3—C13107.64 (15)N4—C11—H11A108.9
C9—N3—C13107.08 (15)C10—C11—H11A108.9
C10—N3—Co1115.28 (12)N4—C11—H11B108.9
C9—N3—Co199.17 (11)C10—C11—H11B108.9
C13—N3—Co1117.56 (11)H11A—C11—H11B107.7
C12—N4—C11109.61 (16)N4—C12—C13115.08 (18)
C12—N4—H4A108 (2)N4—C12—H12A108.5
C11—N4—H4A109 (2)C13—C12—H12A108.5
O1—C1—N1125.08 (18)N4—C12—H12B108.5
O1—C1—C2120.27 (17)C13—C12—H12B108.5
N1—C1—C2114.64 (15)H12A—C12—H12B107.5
C7—C2—C3120.25 (19)N3—C13—C12113.48 (17)
C7—C2—C1128.66 (17)N3—C13—H13A108.9
C3—C2—C1111.08 (17)C12—C13—H13A108.9
C4—C3—C2122.14 (19)N3—C13—H13B108.9
C4—C3—S1131.55 (16)C12—C13—H13B108.9
C2—C3—S1106.31 (14)H13A—C13—H13B107.7
C3—C4—C5116.93 (19)
N2i—Co1—O1—C10.70 (18)C1—C2—C3—C4−178.03 (17)
N2—Co1—O1—C1−179.30 (18)C7—C2—C3—S1−179.55 (15)
N3—Co1—O1—C1−98.62 (18)C1—C2—C3—S11.80 (18)
N3i—Co1—O1—C181.38 (18)O2—S1—C3—C4−64.8 (2)
O2—S1—N1—C1−115.72 (15)O3—S1—C3—C463.7 (2)
O3—S1—N1—C1115.20 (15)N1—S1—C3—C4178.58 (19)
C3—S1—N1—C10.18 (15)O2—S1—C3—C2115.35 (14)
O1i—Co1—N2—C8−86.23 (13)O3—S1—C3—C2−116.12 (14)
O1—Co1—N2—C893.77 (13)N1—S1—C3—C2−1.22 (14)
N3—Co1—N2—C86.49 (13)C2—C3—C4—C50.3 (3)
N3i—Co1—N2—C8−173.51 (13)S1—C3—C4—C5−179.46 (17)
O1i—Co1—N3—C10−3.65 (13)C3—C4—C5—C6−1.3 (3)
O1—Co1—N3—C10176.35 (13)C4—C5—C6—C71.3 (4)
N2i—Co1—N3—C1085.29 (13)C3—C2—C7—C6−0.6 (3)
N2—Co1—N3—C10−94.71 (13)C1—C2—C7—C6177.80 (19)
O1i—Co1—N3—C9112.87 (11)C5—C6—C7—C2−0.4 (3)
O1—Co1—N3—C9−67.13 (11)Co1—N2—C8—C9−34.5 (2)
N2i—Co1—N3—C9−158.19 (11)C10—N3—C9—C872.7 (2)
N2—Co1—N3—C921.81 (11)C13—N3—C9—C8−170.98 (16)
O1i—Co1—N3—C13−132.30 (13)Co1—N3—C9—C8−48.30 (17)
O1—Co1—N3—C1347.70 (13)N2—C8—C9—N359.5 (2)
N2i—Co1—N3—C13−43.36 (14)C9—N3—C10—C11172.09 (16)
N2—Co1—N3—C13136.64 (14)C13—N3—C10—C1156.1 (2)
Co1—O1—C1—N124.4 (3)Co1—N3—C10—C11−77.30 (18)
Co1—O1—C1—C2−154.52 (14)C12—N4—C11—C1052.0 (2)
S1—N1—C1—O1−178.10 (15)N3—C10—C11—N4−58.3 (2)
S1—N1—C1—C20.9 (2)C11—N4—C12—C13−49.1 (2)
O1—C1—C2—C7−1.3 (3)C10—N3—C13—C12−53.1 (2)
N1—C1—C2—C7179.63 (19)C9—N3—C13—C12−170.55 (17)
O1—C1—C2—C3177.19 (16)Co1—N3—C13—C1279.06 (19)
N1—C1—C2—C3−1.9 (2)N4—C12—C13—N352.0 (2)
C7—C2—C3—C40.6 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2B···N4ii0.85 (3)2.38 (3)3.172 (3)154 (2)
N2—H2A···N1i0.91 (3)2.25 (3)2.982 (2)137 (2)
N4—H4A···O3iii0.838 (17)2.221 (18)3.054 (3)173 (3)

Symmetry codes: (ii) x−1, y, z; (i) −x+1, −y+1, −z+1; (iii) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SQ2006).

References

  • Baran, E. J. & Yilmaz, V. T. (2006). Coord. Chem. Rev.250, 1980–1999.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Guney, S., Yilmaz, V. T. & Harrison, W. T. A. (2005). J. Coord. Chem.58, 1667–1674.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED (Version 1.04). Stoe & Cie, Darmstadt, Germany.
  • Yilmaz, V. T., Guney, S. & Harrison, W. T. A. (2005). Z. Naturforsch. Teil B, 60, 403–407.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography