PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m57.
Published online 2007 December 6. doi:  10.1107/S1600536807062794
PMCID: PMC2914940

Poly[[diaqua­nickel(II)]-μ2-4,4′-bipyridine-κ2 N:N′-μ-p-phenyl­enedioxy­diacetato-κ2 O:O′]

Abstract

The title coordination polymer, [Ni(C10H8O6)(C10H8N2)(H2O)2]n, was obtained by the hydro­thermal reaction of nickel(II) sulfate, benzene-1,4-dioxy­diacetic acid (p-phenyl­enedioxy­diacetic acid) and 4,4′-bipyridine (4,4′-bpy) in alkaline aqueous solution. Each NiII atom is coordinated by two O atoms from two benzene-1,4-dioxy­diacetate ligands, two N atoms from two 4,4′-bpy ligands and two water mol­ecules, and displays a distorted octa­hedral geometry. The NiII atom and benzene-1,4-dioxy­diacetate and 4,4′-bpy moieties lie on inversion centres. The benzene-1,4-dioxy­diacetate ligands bridge the NiII atoms to form infinite zigzag chains, which are further inter­connected by 4,4′-bpy ligands to form a grid-like layer parallel to the (0An external file that holds a picture, illustration, etc.
Object name is e-64-00m57-efi1.jpg1) plane. Moreover, there are O—H(...)O hydrogen-bonding inter­actions within the grid-like layer between the coordinated water mol­ecules and the carboxyl­ate O atoms.

Related literature

For related literature, see: Gao et al. (2005 [triangle]); Hong et al. (2006 [triangle]); Qiu et al. (2006 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00m57-scheme1.jpg

Experimental

Crystal data

  • [Ni(C10H8O6)(C10H8N2)(H2O)2]
  • M r = 475.09
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00m57-efi2.jpg
  • a = 5.7541 (1) Å
  • b = 8.1704 (1) Å
  • c = 10.6437 (2) Å
  • α = 106.157 (1)°
  • β = 96.818 (1)°
  • γ = 97.341 (1)°
  • V = 470.40 (1) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.09 mm−1
  • T = 293 (2) K
  • 0.26 × 0.23 × 0.19 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.765, T max = 0.820
  • 6907 measured reflections
  • 1952 independent reflections
  • 1769 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.086
  • S = 1.08
  • 1952 reflections
  • 142 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]) and CAMERON (Watkin et al., 1993 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062794/dn2287sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062794/dn2287Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank South China Normal University for supporting this study.

supplementary crystallographic information

Comment

Benzene-1,4-dioxydiacetic acid is an important biologically active compound that has been commonly used in herbicides and plant-growth agents. The two phenoxyacetate groups have versatile bonding modes to metal ions and easily forms complexes (Gao et al., 2005; Hong et al., 2006; Qiu et al., 2006; Qiu et al., 2007). Recently, we obtained the title nickel polymer (I), its crystal structure is reported here.

In the structure of (I) each NiII atom is coordinated by two O atoms from two benzene-1,4-dioxydiacetate ligands, two N atom from two 4,4'-bpy ligands, and displays a distorted octahedral geometry. The Ni atom lies on an inversion center and benzene-1,4-dioxydiacetate and 4,4'-bpy moieties lie other inversion centers. The benzene-1,4-dioxydiacetate ligands bridge nickel ions to form infinite zigzag chains, which are further interconnected by 4,4'-bpy ligands to form a grid-like layer parallel to the (0 - 1 1) plane (Fig. 2). Moreover, there are O—H···O hydrogen bonding interactions within the grid-like layer between the coordinated water molecules and the carboxylate O atoms (Table 1).

Experimental

A mixture of NiSO4 (0.5 mmol), benzene-1,4-dioxydiacetic acid (0.5 mmol), 4,4'-bipyridine (0.5 mmol), NaOH (1 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated at 433 K for three days and then cooled to room temperature at a rate of 5 K h-1. Single crystals were obtained after washing with water and drying in air.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene and Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H = 0.82 (1) Å and H···H = 1.34 (2) Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement, they were treated as riding on their parent O atoms.

Figures

Fig. 1.
The structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 3; (iii) -x, -y + 2, -z + ...
Fig. 2.
The two-dimensional layer structure of the title compound, viewed along the a axis.

Crystal data

[Ni(C10H8O6)(C10H8N2)(H2O)2]Z = 1
Mr = 475.09F000 = 246
Triclinic, P1Dx = 1.677 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 5.7541 (1) ÅCell parameters from 1800 reflections
b = 8.1704 (1) Åθ = 1.4–28.0º
c = 10.6437 (2) ŵ = 1.09 mm1
α = 106.157 (1)ºT = 293 (2) K
β = 96.818 (1)ºBlock, green
γ = 97.341 (1)º0.26 × 0.23 × 0.19 mm
V = 470.40 (1) Å3

Data collection

Bruker APEXII area-detector diffractometer1952 independent reflections
Radiation source: fine-focus sealed tube1769 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.026
T = 293(2) Kθmax = 26.5º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Bruker, 2004)h = −7→7
Tmin = 0.765, Tmax = 0.820k = −8→10
6907 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.086  w = 1/[σ2(Fo2) + (0.0346P)2 + 0.4701P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1952 reflectionsΔρmax = 0.32 e Å3
142 parametersΔρmin = −0.38 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1666 (4)0.7074 (3)0.7930 (2)0.0318 (6)
H10.28760.72170.86330.038*
C20.1734 (4)0.5879 (3)0.6736 (2)0.0314 (6)
H20.29650.52400.66550.038*
C3−0.0019 (4)0.5624 (3)0.5655 (2)0.0201 (5)
C4−0.1819 (4)0.6612 (3)0.5876 (2)0.0262 (5)
H4−0.30580.64870.51920.031*
C5−0.1772 (4)0.7772 (3)0.7101 (2)0.0264 (5)
H5−0.30050.84050.72180.032*
C60.1281 (4)0.7277 (3)1.1257 (2)0.0253 (5)
C70.3161 (5)0.6440 (3)1.1868 (3)0.0327 (6)
H7A0.24570.58541.24440.039*
H7B0.36330.55721.11630.039*
C80.5001 (4)0.8782 (3)1.3782 (2)0.0273 (5)
C90.6973 (4)1.0042 (3)1.4391 (3)0.0315 (6)
H90.83071.00791.39780.038*
C100.6996 (4)1.1242 (3)1.5598 (3)0.0315 (6)
H100.83441.20671.59970.038*
N1−0.0044 (3)0.8038 (2)0.81332 (18)0.0227 (4)
Ni10.00001.00001.00000.02315 (14)
O10.2019 (3)0.8651 (2)1.09891 (15)0.0251 (4)
O2−0.0799 (3)0.6527 (2)1.1047 (2)0.0427 (5)
O30.5228 (3)0.7621 (2)1.26119 (17)0.0332 (4)
O1W0.3239 (3)1.1425 (2)0.98244 (16)0.0289 (4)
H1W0.27331.21830.95560.043*
H2W0.43071.11220.94240.043*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0272 (12)0.0431 (15)0.0187 (12)0.0114 (11)−0.0037 (9)−0.0003 (11)
C20.0272 (12)0.0421 (15)0.0207 (12)0.0160 (11)0.0006 (9)−0.0009 (11)
C30.0237 (11)0.0198 (11)0.0155 (11)0.0018 (9)0.0034 (9)0.0040 (9)
C40.0279 (12)0.0282 (12)0.0186 (11)0.0084 (9)−0.0033 (9)0.0019 (9)
C50.0281 (12)0.0257 (12)0.0233 (12)0.0104 (9)0.0010 (9)0.0025 (10)
C60.0307 (12)0.0254 (12)0.0201 (11)0.0100 (10)0.0063 (9)0.0040 (9)
C70.0391 (14)0.0283 (13)0.0327 (14)0.0099 (11)0.0040 (11)0.0111 (11)
C80.0275 (11)0.0332 (13)0.0256 (12)0.0098 (10)0.0017 (9)0.0145 (10)
C90.0228 (11)0.0448 (15)0.0318 (14)0.0072 (10)0.0079 (10)0.0175 (12)
C100.0246 (11)0.0379 (14)0.0326 (14)0.0008 (10)0.0026 (10)0.0142 (11)
N10.0247 (9)0.0231 (10)0.0175 (9)0.0040 (8)0.0035 (8)0.0014 (8)
Ni10.0242 (2)0.0247 (2)0.0187 (2)0.00564 (16)0.00278 (16)0.00319 (17)
O10.0280 (8)0.0250 (9)0.0221 (8)0.0067 (7)0.0013 (7)0.0070 (7)
O20.0309 (10)0.0373 (11)0.0653 (14)0.0067 (8)0.0079 (9)0.0234 (10)
O30.0301 (9)0.0409 (11)0.0281 (9)0.0112 (8)0.0036 (7)0.0077 (8)
O1W0.0231 (8)0.0335 (9)0.0317 (9)0.0058 (7)0.0060 (7)0.0110 (8)

Geometric parameters (Å, °)

C1—N11.338 (3)C7—H7B0.9700
C1—C21.379 (3)C8—O31.372 (3)
C1—H10.9300C8—C91.387 (3)
C2—C31.386 (3)C8—C10ii1.392 (3)
C2—H20.9300C9—C101.380 (4)
C3—C41.395 (3)C9—H90.9300
C3—C3i1.486 (4)C10—C8ii1.392 (3)
C4—C51.377 (3)C10—H100.9300
C4—H40.9300N1—Ni12.1735 (18)
C5—N11.340 (3)Ni1—O12.0869 (15)
C5—H50.9300Ni1—O1iii2.0869 (15)
C6—O21.237 (3)Ni1—O1Wiii2.1245 (16)
C6—O11.268 (3)Ni1—O1W2.1245 (16)
C6—C71.526 (3)Ni1—N1iii2.1735 (18)
C7—O31.425 (3)O1W—H1W0.8206
C7—H7A0.9700O1W—H2W0.8144
N1—C1—C2123.6 (2)C10—C9—H9119.3
N1—C1—H1118.2C8—C9—H9119.3
C2—C1—H1118.2C9—C10—C8ii119.9 (2)
C1—C2—C3120.4 (2)C9—C10—H10120.0
C1—C2—H2119.8C8ii—C10—H10120.0
C3—C2—H2119.8C1—N1—C5116.27 (19)
C2—C3—C4115.8 (2)C1—N1—Ni1122.60 (15)
C2—C3—C3i122.1 (2)C5—N1—Ni1121.09 (15)
C4—C3—C3i122.1 (2)O1—Ni1—O1iii180.000 (1)
C5—C4—C3120.3 (2)O1—Ni1—O1Wiii92.17 (6)
C5—C4—H4119.8O1iii—Ni1—O1Wiii87.83 (6)
C3—C4—H4119.8O1—Ni1—O1W87.83 (6)
N1—C5—C4123.5 (2)O1iii—Ni1—O1W92.17 (6)
N1—C5—H5118.3O1Wiii—Ni1—O1W180.0
C4—C5—H5118.3O1—Ni1—N1iii90.23 (7)
O2—C6—O1126.6 (2)O1iii—Ni1—N1iii89.77 (7)
O2—C6—C7116.8 (2)O1Wiii—Ni1—N1iii91.96 (7)
O1—C6—C7116.6 (2)O1W—Ni1—N1iii88.04 (7)
O3—C7—C6114.3 (2)O1—Ni1—N189.77 (7)
O3—C7—H7A108.7O1iii—Ni1—N190.23 (7)
C6—C7—H7A108.7O1Wiii—Ni1—N188.04 (7)
O3—C7—H7B108.7O1W—Ni1—N191.96 (7)
C6—C7—H7B108.7N1iii—Ni1—N1180.000 (1)
H7A—C7—H7B107.6C6—O1—Ni1126.73 (15)
O3—C8—C9115.9 (2)C8—O3—C7117.78 (19)
O3—C8—C10ii125.3 (2)Ni1—O1W—H1W100.2
C9—C8—C10ii118.8 (2)Ni1—O1W—H2W131.1
C10—C9—C8121.3 (2)H1W—O1W—H2W108.2

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+2, −z+3; (iii) −x, −y+2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2iii0.821.812.605 (2)163
O1W—H2W···O1iv0.812.212.962 (2)155

Symmetry codes: (iii) −x, −y+2, −z+2; (iv) −x+1, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2287).

References

  • Bruker (2004). APEX2 (Version 1.22), SAINT (Version 6.0) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gao, S., Liu, J.-W., Huo, L.-H., Xu, Y.-M. & Zhao, H. (2005). Inorg. Chem. Commun.8, 361–364.
  • Hong, X.-L., Li, Y.-Z., Hu, H. M., Pan, Y., Bai, J. F. & You, X.-Z. (2006). Cryst. Growth Des.6, 1221–1224.
  • Qiu, Y.-C., Chen, C.-L., Zeng, R.-H., Cai, Y.-P. & Deng, H. (2006). Acta Cryst. E62, m1979–m1981.
  • Qiu, Y. C., Daiguebonne, C., Liu, J. Q., Zeng, R. H., Kerbellec, N., Deng, H. & Guillou, O. (2007). Inorg. Chim. Acta, 360, 3265–3271.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography