PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m52.
Published online 2007 December 6. doi:  10.1107/S1600536807062769
PMCID: PMC2914936

Bis(2,4-dibromo-6-formyl­phenolato-κ2 O,O′)copper(II)

Abstract

In the title compound, [Cu(C7H3Br2O2)2], the CuII atom, which lies on an inversion centre, is coordinated by four O atoms from two chelating bidentate 2,4-dibromo-6-formyl­phenolate ligands in a slightly distorted square-planar coordination geometry. In the crystal structure, short inter­molecular Br(...)Br [3.516 (4) and 3.653 (4) Å] and Cu(...)Br [3.255 (1) Å] contacts together with C—H(...)O hydrogen bonds generate a three-dimensional network.

Related literature

The presence of halo substituents on aromatic compounds frequently results in stacking arrangements with a short (ca 4 Å) crystallographic axis (Cohen et al., 1964 [triangle]; Zordan et al., 2005 [triangle]; Zaman et al., 2004 [triangle]; Zhang et al., 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00m52-scheme1.jpg

Experimental

Crystal data

  • [Cu(C7H3Br2O2)2]
  • M r = 621.37
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-00m52-efi1.jpg
  • a = 8.2625 (12) Å
  • b = 12.8216 (14) Å
  • c = 15.229 (2) Å
  • V = 1613.3 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 11.28 mm−1
  • T = 298 (2) K
  • 0.58 × 0.18 × 0.14 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002 [triangle]) T min = 0.059, T max = 0.301 (expected range = 0.040–0.206)
  • 6267 measured reflections
  • 1418 independent reflections
  • 1049 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.069
  • S = 1.02
  • 1418 reflections
  • 106 parameters
  • H-atom parameters constrained
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 1997 [triangle]); software used to prepare material for publication: SHELXTL and local programs.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062769/sj2447sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062769/sj2447Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge financial support by the Key Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, People’s Republic of China, and the Creative Talents Base of Graduate Education, Guang Xi Province.

supplementary crystallographic information

Comment

The packing arrangements of halogenated compounds, which Schmidt called the 'chloro effect', have been studied for many years. The presence of chloro substituents on aromatic compounds frequently results in stacking arrangements with a short (ca 4 Å) crystallographic axis (Cohen et al., 1964; Zordan et al., 2005; Zaman et al., 2004; Zhang et al., 2007). The title compound, (I), Fig. 1, contains the dibromo ligand 2,4-dibromo-6-formylphenolate with two Br atoms accessible at the periphery of each ligand.

In (I), the CuII atom is coordinated by four O atoms from two chelating, bidentate 3,5–2,4-dibromo-6-formylphenolate ligands, in a slightly distorted square planar geometry (Table 1). A weak Cu1···Br1i, 3.255 (1) Å contact (i = 1 + x, y, z) occurs in the axial coordination position with respect the coordination plane of the molecule. In addition there are short Br1ii–Br2iii 3.516 (4) Å and Br1ii–Br2iv 3.653 (4) Å [symmetry codes: ii = x, 1/2 - y, -1/2 + z; iii = -x, 1 - y, -z; iv = -1/2 - x, 1 - y, -1/2 + z] contacts. In the crystal structure these intermolecular Br···Br and Cu···Br contacts together with C7—H7···O1 hydrogen bonds generate a three-dimensional network (Fig. 2).

Experimental

An ethanol solution (30 ml) containing 3,5-dibromo-2-hydroxy-benzaldehyde (0.382 g, 2 mmol) was added to an aqueous solution containing amino-methanesulfonic acid(0.222 g, 2 mmol) and sodium hydroxide (0.080 g, 2 mmol). After stirring for 1 h, an aqueous solution of copper chloride (0.396 g, 2 mmol) was added to the resulting solution and stirred for 2 h. The green mixture solution was filtered. After 10 days, green block-like crystals of (I) were obtained by slow evaporation of the filtrate (yield: 49.2%, based on Cu).

Refinement

All H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C–H distances of 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
A view of (I), showing 30% probability displacement ellipsoids. Atoms labelled A are related to other atoms by the symmetry operation -x + 1, -y + 2, -z.
Fig. 2.
Part of the packing of (I) showing the three-dimensional network; broken lines indicate short Br···Br and M···Br contacts and C–H···O hydrogen bonds.

Crystal data

[Cu(C7H3Br2O2)2]F000 = 1164
Mr = 621.37Dx = 2.558 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2295 reflections
a = 8.2625 (12) Åθ = 2.7–26.8º
b = 12.8216 (14) ŵ = 11.28 mm1
c = 15.229 (2) ÅT = 298 (2) K
V = 1613.3 (4) Å3Block, green
Z = 40.58 × 0.18 × 0.14 mm

Data collection

Bruker SMART 1K CCD area-detector diffractometer1418 independent reflections
Radiation source: fine-focus sealed tube1049 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.058
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 2002)h = −9→9
Tmin = 0.059, Tmax = 0.301k = −15→14
6267 measured reflectionsl = −10→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.069  w = 1/[σ2(Fo2) + (0.0306P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1418 reflectionsΔρmax = 0.64 e Å3
106 parametersΔρmin = −0.40 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50001.00000.00000.0343 (2)
O10.3788 (4)1.1291 (2)−0.0202 (2)0.0401 (9)
O20.3351 (3)0.9426 (2)0.0713 (2)0.0353 (8)
Br10.15473 (6)0.79703 (4)0.19008 (4)0.04386 (18)
Br2−0.32171 (5)1.11175 (5)0.16575 (4)0.04679 (19)
C10.2415 (6)1.1486 (3)0.0101 (3)0.0387 (12)
H10.19831.2133−0.00440.046*
C20.1438 (5)1.0839 (3)0.0638 (3)0.0290 (11)
C30.1976 (5)0.9837 (3)0.0916 (3)0.0259 (11)
C40.0877 (5)0.9270 (3)0.1451 (3)0.0277 (11)
C5−0.0614 (5)0.9652 (4)0.1676 (3)0.0323 (12)
H5−0.13020.92620.20310.039*
C6−0.1097 (5)1.0627 (4)0.1372 (3)0.0318 (11)
C7−0.0094 (5)1.1223 (3)0.0878 (3)0.0301 (11)
H7−0.04181.18840.06980.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0233 (4)0.0325 (5)0.0469 (6)−0.0004 (4)0.0076 (4)0.0068 (4)
O10.0293 (18)0.0369 (19)0.054 (2)0.0031 (15)0.0131 (16)0.0149 (17)
O20.0215 (16)0.0349 (18)0.049 (2)0.0036 (14)0.0069 (16)0.0080 (16)
Br10.0395 (3)0.0338 (3)0.0583 (4)−0.0038 (2)0.0016 (3)0.0118 (3)
Br20.0286 (3)0.0583 (4)0.0534 (4)0.0058 (3)0.0100 (2)−0.0060 (3)
C10.033 (3)0.033 (3)0.050 (3)0.001 (2)−0.001 (3)0.010 (3)
C20.025 (2)0.032 (3)0.030 (3)−0.004 (2)0.003 (2)0.000 (2)
C30.023 (2)0.027 (3)0.028 (3)−0.0062 (19)−0.003 (2)0.000 (2)
C40.025 (2)0.027 (2)0.030 (3)−0.006 (2)−0.006 (2)0.002 (2)
C50.029 (3)0.037 (3)0.031 (3)−0.010 (2)0.007 (2)−0.001 (2)
C60.021 (2)0.039 (3)0.035 (3)0.000 (2)0.003 (2)−0.005 (2)
C70.026 (2)0.030 (3)0.035 (3)0.005 (2)0.000 (2)−0.001 (2)

Geometric parameters (Å, °)

Cu1—O21.892 (3)C1—H10.9300
Cu1—O2i1.892 (3)C2—C71.407 (5)
Cu1—O1i1.959 (3)C2—C31.424 (6)
Cu1—O11.959 (3)C3—C41.420 (6)
O1—C11.249 (5)C4—C51.370 (6)
O2—C31.290 (5)C5—C61.391 (6)
Br1—C41.885 (4)C5—H50.9300
Br2—C61.912 (4)C6—C71.355 (6)
C1—C21.418 (6)C7—H70.9300
O2—Cu1—O2i180.0O2—C3—C2124.9 (4)
O2—Cu1—O1i87.09 (12)C4—C3—C2115.6 (4)
O2i—Cu1—O1i92.91 (12)C5—C4—C3122.4 (4)
O2—Cu1—O192.91 (12)C5—C4—Br1119.3 (3)
O2i—Cu1—O187.09 (12)C3—C4—Br1118.2 (3)
O1i—Cu1—O1180.000 (1)C4—C5—C6119.7 (4)
C1—O1—Cu1125.1 (3)C4—C5—H5120.1
C3—O2—Cu1127.8 (3)C6—C5—H5120.1
O1—C1—C2127.8 (4)C7—C6—C5121.1 (4)
O1—C1—H1116.1C7—C6—Br2120.1 (3)
C2—C1—H1116.1C5—C6—Br2118.9 (3)
C7—C2—C1117.3 (4)C6—C7—C2119.8 (4)
C7—C2—C3121.3 (4)C6—C7—H7120.1
C1—C2—C3121.4 (4)C2—C7—H7120.1
O2—C3—C4119.5 (4)
O2—Cu1—O1—C1−0.4 (4)C1—C2—C3—C4−179.9 (4)
O2i—Cu1—O1—C1179.6 (4)O2—C3—C4—C5−178.7 (4)
O1i—Cu1—O1—C1125 (100)C2—C3—C4—C50.8 (6)
O2i—Cu1—O2—C3−37.4 (17)O2—C3—C4—Br14.0 (6)
O1i—Cu1—O2—C3−179.0 (4)C2—C3—C4—Br1−176.5 (3)
O1—Cu1—O2—C31.0 (4)C3—C4—C5—C60.4 (7)
Cu1—O1—C1—C2−0.5 (7)Br1—C4—C5—C6177.8 (4)
O1—C1—C2—C7−178.3 (4)C4—C5—C6—C7−2.1 (7)
O1—C1—C2—C31.1 (8)C4—C5—C6—Br2177.5 (3)
Cu1—O2—C3—C4178.7 (3)C5—C6—C7—C22.5 (7)
Cu1—O2—C3—C2−0.7 (6)Br2—C6—C7—C2−177.2 (3)
C7—C2—C3—O2179.0 (4)C1—C2—C7—C6178.3 (4)
C1—C2—C3—O2−0.4 (7)C3—C2—C7—C6−1.1 (7)
C7—C2—C3—C4−0.5 (6)

Symmetry codes: (i) −x+1, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···01ii0.932.543.475 (5)178

Symmetry codes: (ii) −x−1, y+5/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2447).

References

  • Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SMART (Version 5.0) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc pp. 2000–2013.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  • Zaman, B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des.4, 585–589.
  • Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319–m1320.
  • Zordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc 127, 5979–5989. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography