PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m44.
Published online 2007 December 6. doi:  10.1107/S1600536807063313
PMCID: PMC2914929

catena-Poly[[[aqua­manganese(II)]-di-μ-sulfato-[aqua­manganese(II)]-μ-N,N,N′,N′-tetra­kis(2-pyridylmeth­yl)hexane-1,6-diamine] hexa­hydrate]

Abstract

In the polymeric title compound, {[Mn2(SO4)2(C30H36N6)(H2O)2]·6H2O}n, the two Mn2+ ions are bridged by two sulfate anions to form dinuclear complexes, and these dinuclear species are linked by the hexa­dentate ligand N,N,N′,N′-tetra­kis(2-pyridylmeth­yl)hexane-1,6-diamine (tphn), forming a one-dimensional chain structure running in the [101] direction. The repeat unit of the polymer, Mn2(SO4)2(H2O)2(tphn), is disposed about a twofold axis passing through the centre of the dinuclear unit. The coordination geometry around the Mn centre is distorted octa­hedral. Two methylene groups are each disordered equally over two positions.

Related literature

For a related Mn-complex involving the tphn ligand, see: Hwang & Ha (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00m44-scheme1.jpg

Experimental

Crystal data

  • [Mn2(SO4)2(C30H36N6)(H2O)2]·6H2O
  • M r = 926.78
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00m44-efi1.jpg
  • a = 20.910 (3) Å
  • b = 12.5820 (17) Å
  • c = 15.752 (2) Å
  • β = 99.888 (3)°
  • V = 4082.7 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.80 mm−1
  • T = 243 (2) K
  • 0.21 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.734, T max = 0.888
  • 11793 measured reflections
  • 4165 independent reflections
  • 3158 reflections with I > 2σs(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.079
  • wR(F 2) = 0.145
  • S = 1.22
  • 4165 reflections
  • 271 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.67 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807063313/ln2016sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063313/ln2016Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported in part by the BK21 program of the Ministry of Education & Human Resources Development, Republic of Korea.

supplementary crystallographic information

Comment

The title compound consists of a MnII complex polymer with solvent H2O molecules. In the polymer, two Mn2+ ions are first bridged by two SO4 anion ligands to form dinuclear complexes (Fig. 1), and these dinuclear species are anew bridged by the hexadentate ligand N,N,N',N'-tetrakis(2-pyridylmethyl)hexane-1,6-diamine (tphn) to form a one-dimensional chain structure running in the [101] direction (Fig. 2). The Mn ion is six-coordinated in a distorted octahedral structure by three N atoms from the tphn ligand in the facial position, two O atoms from the two SO4 ligands and an O atom from H2O ligand. The constitutional repeating unit of the polymer, Mn2(SO4)2(H2O)2(tphn), is disposed about a twofold axis passing through the centre of the dinuclear unit. As the twofold axis is parallel to the b axis, the unit lies in the (010) plane. The Mn—N(amine) bond length [2.360 (4) Å] is slightly longer than the Mn—N(pyridyl) bond lengths [2.300 (4) and 2.256 (4) Å], and the Mn—O(H2O) bond length [2.206 (3) Å] is slightly longer than the Mn—O(SO4) bond lengths [2.139 (3) and 2.143 (3) Å]. The geometry of the bridging SO4 ligand is nearly tetrahedral with the O—S—O bond angles of 107.96 (18)–110.23 (18)°, and the S—O bond distances are almost equal [1.456 (3)–1.486 (3) Å]. The compound displays intra- and intermolecular O—H···O hydrogen bonds among the H2O ligand, solvent molecules and SO4 anions (Fig. 2, Table 1).

Experimental

To a solution of MnSO4.5H2O (0.25 g, 1.04 mmol) in H2O (10 ml) was added a solution of N,N,N',N'-tetrakis(2-pyridylmethyl)hexane-1,6-diamine (0.50 g, 1.04 mmol) in EtOH (10 ml) and stirred for 1 h at room temparature, and then filtered. The solvent was removed under vacuum, the residue washed with EtOH/acetone and dried, to give a pale yellow powder (0.41 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an aqueous solution. MS (FAB): m/z 632 (Mn(tphn)HSO4+); IR (KBr): 3405 cm-1 (broad).

Refinement

H atoms bonded to C atoms were positioned geometrically and allowed to ride on their respective carrier atoms [C—H = 0.94 Å (aromatic) or 0.98 Å (CH2) and Uiso(H) = 1.2Ueq(C)]. The H atoms of the water ligand and solvent molecules were located from Fourier difference maps, but their positions were not refined and Uiso(H) was fixed at 0.08. The hexylene chain of the tphn ligand displayed relatively large displacement factors so that the chain appears to be partially disordered. Atoms C14 and C15 were modelled anisotropically as disordered over two sites, with a site occupancy factor of 0.5. The disorder of the hexylene chain and the relatively large displacement factors of the solvent water molecules result in the large value of the R factor.

Figures

Fig. 1.
The structure of the constitutional repeating unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms and the solvent H2O molecules have been omitted for clarity. The bonds of the disordered hexylene chains ...
Fig. 2.
View of the unit-cell contents and chain structure of the title compound. H atoms at C atoms have been omitted for clarity. Hydrogen-bond interactions are drawn with dashed lines.

Crystal data

[Mn2(SO4)2(C30H36N6)(H2O)2]·6H2OF000 = 1936
Mr = 926.78Dx = 1.508 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2250 reflections
a = 20.910 (3) Åθ = 2.2–24.3º
b = 12.5820 (17) ŵ = 0.80 mm1
c = 15.752 (2) ÅT = 243 (2) K
β = 99.888 (3)ºBlock, colorless
V = 4082.7 (10) Å30.21 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer4165 independent reflections
Radiation source: fine-focus sealed tube3158 reflections with I > 2σs(I)
Monochromator: graphiteRint = 0.050
T = 243(2) Kθmax = 26.4º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −26→20
Tmin = 0.734, Tmax = 0.888k = −15→15
11793 measured reflectionsl = −18→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H-atom parameters constrained
wR(F2) = 0.145  w = 1/[σ2(Fo2) + (0.0516P)2] where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
4165 reflectionsΔρmax = 0.56 e Å3
271 parametersΔρmin = −0.67 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Mn10.39214 (3)0.24391 (5)0.21343 (4)0.0214 (2)
N10.41270 (18)0.4176 (3)0.1814 (2)0.0258 (9)
N20.28972 (18)0.2294 (3)0.1407 (2)0.0263 (9)
N30.32712 (19)0.3532 (3)0.2857 (2)0.0275 (9)
C10.4377 (2)0.4535 (4)0.1136 (3)0.0317 (12)
H10.44960.40330.07490.038*
C20.4467 (3)0.5585 (4)0.0978 (4)0.0515 (16)
H20.46440.58020.04970.062*
C30.4295 (4)0.6309 (4)0.1537 (5)0.082 (3)
H30.43470.70400.14460.098*
C40.4040 (4)0.5958 (4)0.2244 (4)0.072 (2)
H40.39230.64490.26410.086*
C50.3960 (2)0.4891 (4)0.2360 (3)0.0329 (12)
C60.3681 (2)0.4466 (4)0.3113 (3)0.0334 (12)
H6A0.40340.42690.35790.040*
H6B0.34210.50200.33300.040*
C70.2691 (2)0.1531 (4)0.0829 (3)0.0310 (12)
H70.30000.10550.06780.037*
C80.2056 (3)0.1406 (4)0.0446 (3)0.0376 (13)
H80.19340.08600.00430.045*
C90.1602 (3)0.2099 (4)0.0664 (3)0.0419 (14)
H90.11620.20340.04110.050*
C100.1798 (3)0.2889 (4)0.1256 (3)0.0375 (13)
H100.14960.33730.14110.045*
C110.2447 (2)0.2960 (4)0.1620 (3)0.0283 (11)
C120.2683 (2)0.3835 (4)0.2250 (3)0.0349 (12)
H12A0.27750.44690.19310.042*
H12B0.23380.40160.25760.042*
C130.3108 (3)0.2990 (4)0.3633 (3)0.0414 (13)
H13A0.28080.24140.34200.050*0.50
H13B0.35090.26510.39220.050*0.50
H13C0.35060.26640.39450.050*0.50
H13D0.29730.35330.40110.050*0.50
C14A0.2846 (6)0.3505 (7)0.4266 (6)0.039 (3)0.50
H14A0.24350.38310.40000.047*0.50
H14B0.31410.40790.45000.047*0.50
C15A0.2719 (5)0.2795 (8)0.5022 (6)0.033 (2)0.50
H15A0.24090.22350.48000.040*0.50
H15B0.31250.24530.52880.040*0.50
C14B0.2607 (5)0.2176 (8)0.3489 (6)0.038 (3)0.50
H14C0.27080.16730.30560.046*0.50
H14D0.21890.25110.32600.046*0.50
C15B0.2545 (6)0.1568 (7)0.4313 (6)0.042 (3)0.50
H15C0.22620.09530.41570.050*0.50
H15D0.29750.12990.45690.050*0.50
S10.50266 (6)0.19295 (9)0.09722 (7)0.0224 (3)
O10.43452 (15)0.1790 (2)0.11052 (18)0.0311 (8)
O20.50341 (16)0.2496 (2)0.01682 (18)0.0340 (8)
O30.53263 (16)0.0869 (2)0.09408 (18)0.0304 (8)
O40.53755 (16)0.2547 (2)0.17063 (18)0.0332 (8)
O5W0.37252 (16)0.0856 (2)0.26352 (19)0.0335 (8)
H5W10.37060.02100.23040.080*
H5W20.39520.07460.32000.080*
O6W0.0222 (2)0.3660 (3)0.1421 (2)0.0555 (11)
H6W10.01160.33390.08600.080*
H6W20.00000.42240.12670.080*
O7W0.11759 (19)0.3934 (3)0.3098 (3)0.0633 (12)
H7W10.11730.41220.37170.080*
H7W20.07230.39130.29880.080*
O8W0.1124 (2)0.4811 (3)0.4739 (3)0.0716 (14)
H8W10.07980.43830.50240.080*
H8W20.08970.54290.44590.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0244 (4)0.0200 (4)0.0213 (3)0.0010 (3)0.0082 (3)0.0018 (3)
N10.026 (2)0.025 (2)0.029 (2)0.0012 (17)0.0125 (18)−0.0024 (17)
N20.026 (2)0.030 (2)0.0251 (19)0.0024 (17)0.0088 (17)0.0064 (17)
N30.031 (2)0.032 (2)0.0216 (19)−0.0001 (18)0.0123 (18)0.0043 (17)
C10.040 (3)0.029 (3)0.031 (3)0.003 (2)0.019 (2)0.003 (2)
C20.064 (4)0.034 (3)0.067 (4)0.000 (3)0.041 (3)0.015 (3)
C30.130 (7)0.022 (3)0.117 (6)−0.007 (4)0.084 (6)0.003 (3)
C40.113 (6)0.026 (3)0.095 (5)−0.008 (3)0.072 (5)−0.014 (3)
C50.040 (3)0.028 (3)0.035 (3)−0.002 (2)0.018 (2)−0.004 (2)
C60.046 (3)0.030 (3)0.030 (3)0.000 (2)0.020 (2)−0.007 (2)
C70.035 (3)0.029 (3)0.029 (3)0.000 (2)0.006 (2)−0.002 (2)
C80.042 (4)0.040 (3)0.029 (3)−0.012 (3)0.000 (3)0.006 (2)
C90.027 (3)0.061 (4)0.037 (3)−0.004 (3)0.001 (2)0.018 (3)
C100.034 (3)0.047 (3)0.034 (3)0.009 (3)0.012 (2)0.015 (2)
C110.029 (3)0.035 (3)0.023 (2)0.003 (2)0.012 (2)0.013 (2)
C120.036 (3)0.038 (3)0.035 (3)0.010 (2)0.017 (2)0.004 (2)
C130.046 (4)0.054 (3)0.027 (3)−0.004 (3)0.013 (3)0.006 (2)
C14A0.056 (8)0.024 (5)0.042 (6)0.004 (5)0.023 (6)0.004 (5)
C15A0.041 (7)0.035 (6)0.026 (5)−0.002 (4)0.012 (5)0.003 (4)
C14B0.058 (8)0.036 (6)0.024 (5)0.009 (5)0.021 (5)0.004 (4)
C15B0.055 (8)0.030 (6)0.042 (6)0.014 (5)0.016 (6)0.012 (5)
S10.0259 (7)0.0213 (6)0.0212 (6)0.0008 (5)0.0076 (5)−0.0024 (5)
O10.033 (2)0.0322 (18)0.0319 (18)−0.0025 (15)0.0158 (16)−0.0072 (14)
O20.043 (2)0.0343 (19)0.0269 (16)−0.0004 (17)0.0138 (16)0.0022 (15)
O30.035 (2)0.0259 (17)0.0302 (17)0.0045 (15)0.0063 (15)−0.0066 (14)
O40.039 (2)0.0248 (17)0.0328 (17)0.0084 (16)−0.0009 (15)−0.0086 (14)
O5W0.042 (2)0.0243 (17)0.0338 (18)−0.0047 (16)0.0057 (16)0.0018 (14)
O6W0.074 (3)0.048 (2)0.046 (2)−0.003 (2)0.015 (2)−0.0042 (18)
O7W0.054 (3)0.045 (2)0.095 (3)0.011 (2)0.026 (3)0.025 (2)
O8W0.060 (3)0.069 (3)0.096 (3)0.022 (2)0.044 (3)0.041 (2)

Geometric parameters (Å, °)

Mn1—O12.139 (3)C11—C121.507 (6)
Mn1—O4i2.143 (3)C12—H12A0.9800
Mn1—O5W2.206 (3)C12—H12B0.9800
Mn1—N22.256 (4)C13—C14A1.379 (10)
Mn1—N12.300 (4)C13—C14B1.456 (11)
Mn1—N32.360 (4)C13—H13A0.9800
N1—C51.332 (5)C13—H13B0.9800
N1—C11.345 (5)C13—H13C0.9800
N2—C71.342 (5)C13—H13D0.9800
N2—C111.346 (6)C14A—C15A1.547 (12)
N3—C61.468 (6)C14A—H14A0.9800
N3—C121.473 (6)C14A—H14B0.9800
N3—C131.489 (5)C15A—C15Bii1.499 (13)
C1—C21.364 (6)C15A—H15A0.9800
C1—H10.9400C15A—H15B0.9800
C2—C31.358 (7)C14B—C15B1.531 (12)
C2—H20.9400C14B—H14C0.9800
C3—C41.387 (7)C14B—H14D0.9800
C3—H30.9400C15B—H15C0.9800
C4—C51.370 (7)C15B—H15D0.9800
C4—H40.9400S1—O21.456 (3)
C5—C61.507 (6)S1—O41.477 (3)
C6—H6A0.9800S1—O31.479 (3)
C6—H6B0.9800S1—O11.486 (3)
C7—C81.370 (7)O5W—H5W10.963
C7—H70.9400O5W—H5W20.944
C8—C91.376 (7)O6W—H6W10.962
C8—H80.9400O6W—H6W20.860
C9—C101.377 (7)O7W—H7W11.004
C9—H90.9400O7W—H7W20.933
C10—C111.381 (7)O8W—H8W11.030
C10—H100.9400O8W—H8W20.977
O1—Mn1—O4i110.92 (13)C10—C11—C12120.5 (4)
O1—Mn1—O5W93.05 (11)N3—C12—C11112.4 (4)
O4i—Mn1—O5W83.96 (11)N3—C12—H12A109.1
O1—Mn1—N293.72 (12)C11—C12—H12A109.1
O4i—Mn1—N2152.92 (13)N3—C12—H12B109.1
O5W—Mn1—N283.68 (12)C11—C12—H12B109.1
O1—Mn1—N194.54 (12)H12A—C12—H12B107.9
O4i—Mn1—N190.01 (12)C14A—C13—C14B94.5 (7)
O5W—Mn1—N1171.62 (12)C14A—C13—N3123.6 (6)
N2—Mn1—N199.36 (13)C14B—C13—N3117.1 (5)
O1—Mn1—N3159.47 (12)C14A—C13—H13A106.4
O4i—Mn1—N385.39 (13)N3—C13—H13A106.4
O5W—Mn1—N3101.28 (12)C14A—C13—H13B106.4
N2—Mn1—N373.57 (13)C14B—C13—H13B107.5
N1—Mn1—N372.36 (12)N3—C13—H13B106.4
C5—N1—C1117.8 (4)H13A—C13—H13B106.5
C5—N1—Mn1114.9 (3)C14A—C13—H13C104.0
C1—N1—Mn1127.3 (3)C14B—C13—H13C108.0
C7—N2—C11117.3 (4)N3—C13—H13C108.0
C7—N2—Mn1124.6 (3)H13A—C13—H13C107.5
C11—N2—Mn1117.8 (3)C14B—C13—H13D108.0
C6—N3—C12110.7 (4)N3—C13—H13D108.0
C6—N3—C13110.2 (3)H13A—C13—H13D119.2
C12—N3—C13111.6 (4)H13B—C13—H13D109.6
C6—N3—Mn1104.0 (3)H13C—C13—H13D107.3
C12—N3—Mn1108.9 (3)C13—C14A—C15A115.3 (8)
C13—N3—Mn1111.2 (3)C13—C14A—H14A108.4
N1—C1—C2123.7 (4)C15A—C14A—H14A108.4
N1—C1—H1118.2C13—C14A—H14B108.4
C2—C1—H1118.2C15A—C14A—H14B108.4
C3—C2—C1118.2 (5)H14A—C14A—H14B107.5
C3—C2—H2120.9C15Bii—C15A—C14A111.2 (8)
C1—C2—H2120.9C15Bii—C15A—H15A109.4
C2—C3—C4119.2 (5)C14A—C15A—H15A109.4
C2—C3—H3120.4C15Bii—C15A—H15B109.4
C4—C3—H3120.4C14A—C15A—H15B109.4
C5—C4—C3119.5 (5)H15A—C15A—H15B108.0
C5—C4—H4120.3C13—C14B—C15B112.5 (8)
C3—C4—H4120.3C13—C14B—H14C109.1
N1—C5—C4121.6 (5)C15B—C14B—H14C109.1
N1—C5—C6116.7 (4)C13—C14B—H14D109.1
C4—C5—C6121.7 (4)C15B—C14B—H14D109.1
N3—C6—C5110.7 (3)H14C—C14B—H14D107.8
N3—C6—H6A109.5C15Aii—C15B—C14B114.9 (8)
C5—C6—H6A109.5C15Aii—C15B—H15C108.5
N3—C6—H6B109.5C14B—C15B—H15C108.5
C5—C6—H6B109.5C15Aii—C15B—H15D108.5
H6A—C6—H6B108.1C14B—C15B—H15D108.5
N2—C7—C8123.7 (5)H15C—C15B—H15D107.5
N2—C7—H7118.2O2—S1—O4110.23 (18)
C8—C7—H7118.2O2—S1—O3110.17 (18)
C7—C8—C9118.5 (5)O4—S1—O3110.21 (18)
C7—C8—H8120.8O2—S1—O1109.54 (19)
C9—C8—H8120.8O4—S1—O1107.96 (18)
C8—C9—C10119.1 (5)O3—S1—O1108.69 (18)
C8—C9—H9120.4S1—O1—Mn1126.45 (18)
C10—C9—H9120.4S1—O4—Mn1i143.91 (19)
C9—C10—C11119.1 (5)H5W1—O5W—H5W2110.7
C9—C10—H10120.5H6W1—O6W—H6W293.4
C11—C10—H10120.5H7W1—O7W—H7W290.7
N2—C11—C10122.3 (5)H8W1—O8W—H8W2107.8
N2—C11—C12117.1 (4)
O1—Mn1—N1—C5−176.5 (3)C12—N3—C6—C5−67.5 (5)
O4i—Mn1—N1—C5−65.5 (3)C13—N3—C6—C5168.5 (4)
N2—Mn1—N1—C588.9 (3)Mn1—N3—C6—C549.3 (4)
N3—Mn1—N1—C519.6 (3)N1—C5—C6—N3−36.5 (6)
O1—Mn1—N1—C15.3 (4)C4—C5—C6—N3143.6 (6)
O4i—Mn1—N1—C1116.3 (4)C11—N2—C7—C80.6 (6)
N2—Mn1—N1—C1−89.2 (4)Mn1—N2—C7—C8174.5 (3)
N3—Mn1—N1—C1−158.5 (4)N2—C7—C8—C9−0.1 (7)
O1—Mn1—N2—C731.8 (3)C7—C8—C9—C10−0.1 (7)
O4i—Mn1—N2—C7−124.2 (4)C8—C9—C10—C11−0.4 (7)
O5W—Mn1—N2—C7−60.9 (3)C7—N2—C11—C10−1.1 (6)
N1—Mn1—N2—C7127.0 (3)Mn1—N2—C11—C10−175.4 (3)
N3—Mn1—N2—C7−164.6 (4)C7—N2—C11—C12−178.3 (4)
O1—Mn1—N2—C11−154.4 (3)Mn1—N2—C11—C127.4 (5)
O4i—Mn1—N2—C1149.7 (4)C9—C10—C11—N21.0 (7)
O5W—Mn1—N2—C11113.0 (3)C9—C10—C11—C12178.1 (4)
N1—Mn1—N2—C11−59.1 (3)C6—N3—C12—C11148.8 (4)
N3—Mn1—N2—C119.2 (3)C13—N3—C12—C11−88.0 (5)
O1—Mn1—N3—C6−88.2 (4)Mn1—N3—C12—C1135.0 (4)
O4i—Mn1—N3—C655.5 (3)N2—C11—C12—N3−29.7 (6)
O5W—Mn1—N3—C6138.4 (3)C10—C11—C12—N3153.1 (4)
N2—Mn1—N3—C6−141.7 (3)C6—N3—C13—C14A52.1 (8)
N1—Mn1—N3—C6−35.9 (3)C12—N3—C13—C14A−71.4 (8)
O1—Mn1—N3—C1229.9 (5)Mn1—N3—C13—C14A166.8 (7)
O4i—Mn1—N3—C12173.6 (3)C6—N3—C13—C14B168.5 (6)
O5W—Mn1—N3—C12−103.5 (3)C12—N3—C13—C14B45.0 (7)
N2—Mn1—N3—C12−23.6 (3)Mn1—N3—C13—C14B−76.8 (7)
N1—Mn1—N3—C1282.1 (3)C14B—C13—C14A—C15A53.7 (10)
O1—Mn1—N3—C13153.2 (3)N3—C13—C14A—C15A−179.5 (7)
O4i—Mn1—N3—C13−63.1 (3)C13—C14A—C15A—C15Bii178.2 (9)
O5W—Mn1—N3—C1319.8 (3)C14A—C13—C14B—C15B−56.4 (9)
N2—Mn1—N3—C1399.7 (3)N3—C13—C14B—C15B172.1 (6)
N1—Mn1—N3—C13−154.5 (3)C13—C14B—C15B—C15Aii68.7 (12)
C5—N1—C1—C2−0.1 (7)O2—S1—O1—Mn1−116.8 (2)
Mn1—N1—C1—C2178.1 (4)O4—S1—O1—Mn13.3 (3)
N1—C1—C2—C3−0.1 (9)O3—S1—O1—Mn1122.8 (2)
C1—C2—C3—C40.5 (11)O4i—Mn1—O1—S1−32.5 (3)
C2—C3—C4—C5−0.8 (11)O5W—Mn1—O1—S1−117.2 (2)
C1—N1—C5—C4−0.2 (8)N2—Mn1—O1—S1158.9 (2)
Mn1—N1—C5—C4−178.6 (5)N1—Mn1—O1—S159.2 (2)
C1—N1—C5—C6179.9 (4)N3—Mn1—O1—S1108.3 (4)
Mn1—N1—C5—C61.5 (5)O2—S1—O4—Mn1i−134.1 (3)
C3—C4—C5—N10.6 (10)O3—S1—O4—Mn1i−12.3 (4)
C3—C4—C5—C6−179.5 (6)O1—S1—O4—Mn1i106.3 (4)

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1/2, −y+1/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5W—H5W1···O7Wiii0.9631.7582.703 (5)166
O5W—H5W2···O3i0.9441.8522.727 (4)153
O6W—H6W1···O2iv0.9621.9112.865 (5)171
O6W—H6W2···O3v0.8602.2662.899 (5)130
O7W—H7W1···O8W1.0041.8472.829 (6)165
O7W—H7W2···O6W0.9332.5303.044 (6)115
O7W—H7W2···O6Wvi0.9332.3473.162 (6)146
O8W—H8W1···O3vii1.0301.9102.860 (5)152
O8W—H8W2···O1viii0.9771.9562.913 (5)166
O8W—H8W2···O3viii0.9772.5873.317 (5)132

Symmetry codes: (iii) −x+1/2, y−1/2, −z+1/2; (i) −x+1, y, −z+1/2; (iv) −x+1/2, −y+1/2, −z; (v) x−1/2, y+1/2, z; (vi) −x, y, −z+1/2; (vii) x−1/2, −y+1/2, z+1/2; (viii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LN2016).

References

  • Bruker (2000). SADABS (Version 2.03), SMART (Version 5.618) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hwang, I.-C. & Ha, K. (2007). Acta Cryst. E63, m2302.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography