PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m42–m43.
Published online 2007 December 6. doi:  10.1107/S1600536807061478
PMCID: PMC2914928

Di-μ3-iodido-diiodidobis(μ2-4′-phenyl-2,2′:6′,2′′-terpyridine)tetra­copper(I)

Abstract

The title complex, [Cu4I4(C21H15N3)2], lies on an inversion centre located at the centroid of a four-membered ring formed by one of the crystallographically independent CuI ions and a triply bridging iodide ligand. The 2,2′:6′,2′′-terpyridine (phterpy) ligand chelates each of the independent CuI centres in a bidentate fashion, with the N atom of the central pyridyl ring bridging the two CuI centres and those of the outer pyridyl rings binding the two independent CuI ions individually to form a dinuclear system. These are further linked by triply-bridging I anions to form the centrosymmetric tetra­nuclear units. One independent Cu atom binds to each of the inversion-related I anions while the other coordinates to one bridging and one terminal monodentate iodide ligand. The outer pyridyl rings are twisted relative to the central pyridyl ring of the phterpy ligand with dihedral angles of 18.7 (1) and 35.6 (1)°, respectively.

Related literature

For terpyridyl complexes in supra­molecular frameworks and functional materials, see: Constable et al. (2005 [triangle]); Hofmeier & Schubert (2004 [triangle]); Thompson (1997 [triangle]). For common terpyridyl complexes, see: Andres & Schubert (2004 [triangle]). For terpyridyl CuI and AgI double helical complexes, see: Constable et al. (1994 [triangle]); Hou & Li (2005 [triangle]). For the preparation of the phterpy ligand, see: Constable et al. (1990 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-64-00m42-scheme1.jpg

Experimental

Crystal data

  • [Cu4I4(C21H15N3)2]
  • M r = 1380.48
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00m42-efi1.jpg
  • a = 8.8536 (6) Å
  • b = 9.7836 (7) Å
  • c = 25.4728 (18) Å
  • β = 102.542 (2)°
  • V = 2153.8 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.85 mm−1
  • T = 293 (2) K
  • 0.14 × 0.11 × 0.07 mm

Data collection

  • Bruker APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.550, T max = 0.728
  • 11822 measured reflections
  • 4208 independent reflections
  • 3267 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.106
  • S = 1.03
  • 4208 reflections
  • 253 parameters
  • H-atom parameters constrained
  • Δρmax = 1.14 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2002 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807061478/sj2432sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061478/sj2432Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Jiangxi Science and Technology Normal University for supporting this study.

supplementary crystallographic information

Comment

2,2':6',2"-Terpyridine (terpy) is well known for its applications in the synthesis of supramolecular frameworks and functional materials because of its strong affinity for transition metal ions and the ability to freely functionalize the central pyridyl ring (Constable et al., 2005; Hofmeier & Schubert, 2004; Thompson, 1997). For many reported terpyridyl complexes, the ligand often chelates to a single metal ion to form stable complexes (Andres & Schubert, 2004). Additionally, partitioning of terpy into one monodentate and bidentate domains on coordination to a CuI or AgI center may lead to the formation of polynuclear double helical cations (Constable et al., 1994; Hou & Li, 2005). We report here a new tetranuclear complex, incorporating the 4'-phenyl-2,2':6',2"-terpyridine (phterpy) ligand.

The asymmetric unit of the title complex contains two crystallographically independent CuI ions with distorted tetrahedral geometry, Table 1, defined by the N1 and N2 atoms from the phterpy ligand and two triply briging I1- ions for Cu1 and the N2 and N3 atoms from the phterpy ligand, one triply bridging I1- anion and one monodentate, terminal I2- ion, for Cu2, Fig. 1. The phterpy ligand chelates each of the independent CuI centres in a bidentate fashion, with the N2 atom of the central pyridyl ring bridging the two CuI centres and N1 and N3 of the outer pyridyl rings binding to Cu1 and Cu2 respectively to form a dinuclear system [Cu1···Cu2 distance of 2.6604 (11) Å]. These are further bridged by two symmetry-related I1 and I1A (symmetry code, A: -x, 1 - y, -z) ions to form a centrosymmetric tetranuclear unit. The Cu1···Cu1A distance is 2.5982 (12) Å. The I1- anion bridges three CuI cations and a monodentate I2- anion completes the coordination sphere of the Cu2 cation. The N1 and N3 pyridyl rings are twisted about central N2 pyridyl ring with dihedral angles of 18.7 and 35.6 °, respectively. The values of the bite angles of the terpyridyl unit are 77.43 (15) and 75.98 (15) °, respectively.

Experimental

4'-Phenyl-2,2':6',2"-terpyridine was synthesized using a reported procedure (Constable et al., 1990). The ligand (0.030 g, 0.1 mmol), copper(I) iodide (0.019, 0.1 mmol) and ethanol (8 ml) were mixed in a 12-ml Telfon-lined, stainless-steel Parr bomb. The bomb was heated at 418 K for 72 h and then cooled to room temperature at a rate of 5 K h-1. Black block-shaped crystals were obtained in about 40% yield (0.028 g).

Refinement

The carbon-bound H atoms were placed at calculated positions (C—H = 0.93 Å) and refined as riding, with U(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title complex, with displacement ellipsoids drawn at the 30% probability level, and H atoms as spheres of arbitrary radius; symmetry code, A: -x, 1 - y, -z.

Crystal data

[Cu4I4(C21H15N3)2]F000 = 1304
Mr = 1380.48Dx = 2.129 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1992 reflections
a = 8.8536 (6) Åθ = 2.4–24.8º
b = 9.7836 (7) ŵ = 4.85 mm1
c = 25.4728 (18) ÅT = 293 (2) K
β = 102.542 (2)ºBlock, black
V = 2153.8 (3) Å30.14 × 0.11 × 0.07 mm
Z = 2

Data collection

Bruker APEX area-detector diffractometer4208 independent reflections
Radiation source: fine-focus sealed tube3267 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.025
T = 293(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −10→8
Tmin = 0.550, Tmax = 0.728k = −12→10
11822 measured reflectionsl = −30→31

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.106  w = 1/[σ2(Fo2) + (0.0607P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4208 reflectionsΔρmax = 1.14 e Å3
253 parametersΔρmin = −0.59 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I1−0.20412 (4)0.35622 (4)−0.017321 (14)0.06204 (15)
I2−0.15633 (4)0.14399 (4)0.141286 (13)0.05679 (14)
Cu10.00247 (8)0.49793 (8)0.05117 (2)0.0555 (2)
Cu2−0.02931 (8)0.23388 (8)0.07129 (3)0.0582 (2)
N1−0.0966 (5)0.5543 (4)0.11258 (16)0.0514 (11)
N20.1542 (4)0.3995 (4)0.12147 (15)0.0417 (9)
N30.1674 (5)0.1989 (4)0.04594 (15)0.0455 (10)
C1−0.2391 (7)0.6083 (7)0.1069 (3)0.0680 (17)
H1−0.29780.62090.07230.082*
C2−0.3018 (8)0.6453 (7)0.1488 (3)0.078 (2)
H2−0.40160.68050.14310.093*
C3−0.2136 (9)0.6293 (7)0.2001 (3)0.081 (2)
H3−0.25150.65700.22970.097*
C4−0.0680 (7)0.5715 (6)0.2070 (2)0.0640 (16)
H4−0.00820.55750.24140.077*
C5−0.0124 (6)0.5350 (5)0.1625 (2)0.0481 (12)
C60.1388 (6)0.4662 (5)0.16612 (18)0.0423 (11)
C70.2558 (6)0.4698 (5)0.21210 (18)0.0475 (12)
H70.24180.51900.24190.057*
C80.3941 (6)0.4006 (5)0.21402 (18)0.0448 (12)
C90.4080 (6)0.3321 (5)0.1678 (2)0.0475 (12)
H90.49890.28500.16710.057*
C100.2884 (6)0.3325 (5)0.12245 (19)0.0428 (11)
C110.2994 (6)0.2570 (5)0.07320 (18)0.0418 (11)
C120.4370 (6)0.2468 (5)0.0554 (2)0.0511 (13)
H120.52610.29030.07400.061*
C130.4395 (7)0.1722 (5)0.0102 (2)0.0539 (14)
H130.53100.1627−0.00170.065*
C140.3049 (7)0.1111 (6)−0.0177 (2)0.0569 (15)
H140.30390.0599−0.04860.068*
C150.1743 (6)0.1281 (5)0.00135 (19)0.0490 (13)
H150.08360.0881−0.01770.059*
C160.5203 (6)0.3988 (5)0.26341 (19)0.0480 (12)
C170.4964 (7)0.4382 (6)0.3127 (2)0.0629 (15)
H170.39810.46650.31540.075*
C180.6128 (8)0.4373 (7)0.3581 (2)0.0728 (18)
H180.59230.46280.39110.087*
C190.7590 (8)0.3989 (7)0.3548 (3)0.078 (2)
H190.83840.39970.38550.093*
C200.7890 (8)0.3592 (7)0.3067 (3)0.079 (2)
H200.88820.33240.30450.094*
C210.6691 (7)0.3593 (6)0.2610 (2)0.0686 (17)
H210.68940.33220.22830.082*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.0509 (2)0.0852 (3)0.0451 (2)−0.01917 (18)−0.00047 (17)0.01160 (18)
I20.0519 (2)0.0800 (3)0.0395 (2)−0.00421 (17)0.01224 (16)0.01046 (16)
Cu10.0535 (4)0.0751 (5)0.0373 (3)−0.0026 (3)0.0088 (3)0.0060 (3)
Cu20.0506 (4)0.0782 (5)0.0497 (4)−0.0087 (3)0.0191 (3)0.0008 (3)
N10.048 (3)0.060 (3)0.047 (2)0.006 (2)0.012 (2)0.005 (2)
N20.038 (2)0.054 (2)0.033 (2)−0.0018 (19)0.0069 (17)−0.0023 (18)
N30.043 (2)0.056 (3)0.037 (2)−0.003 (2)0.0071 (18)−0.0025 (19)
C10.065 (4)0.078 (4)0.058 (4)0.022 (3)0.008 (3)0.013 (3)
C20.055 (4)0.093 (5)0.085 (5)0.031 (3)0.015 (4)0.001 (4)
C30.085 (5)0.088 (5)0.078 (5)0.024 (4)0.033 (4)−0.011 (4)
C40.062 (4)0.082 (4)0.047 (3)0.011 (3)0.011 (3)−0.008 (3)
C50.044 (3)0.058 (3)0.043 (3)0.004 (2)0.011 (2)−0.003 (2)
C60.044 (3)0.049 (3)0.034 (2)0.002 (2)0.007 (2)−0.001 (2)
C70.055 (3)0.055 (3)0.032 (2)0.001 (2)0.008 (2)−0.009 (2)
C80.045 (3)0.051 (3)0.036 (2)0.000 (2)0.004 (2)−0.002 (2)
C90.044 (3)0.054 (3)0.042 (3)0.005 (2)0.003 (2)−0.003 (2)
C100.038 (3)0.051 (3)0.039 (3)−0.004 (2)0.008 (2)−0.006 (2)
C110.040 (3)0.048 (3)0.035 (2)0.000 (2)0.004 (2)−0.003 (2)
C120.041 (3)0.063 (4)0.047 (3)0.002 (2)0.004 (2)−0.006 (2)
C130.048 (3)0.059 (3)0.058 (3)0.006 (3)0.021 (3)−0.005 (3)
C140.067 (4)0.059 (4)0.049 (3)−0.002 (3)0.021 (3)−0.010 (3)
C150.050 (3)0.062 (3)0.034 (3)−0.011 (2)0.006 (2)−0.009 (2)
C160.048 (3)0.051 (3)0.040 (3)0.000 (2)−0.002 (2)−0.005 (2)
C170.053 (3)0.080 (4)0.052 (3)−0.003 (3)0.003 (3)−0.013 (3)
C180.077 (5)0.092 (5)0.043 (3)−0.006 (4)−0.002 (3)−0.009 (3)
C190.071 (5)0.088 (5)0.058 (4)−0.008 (4)−0.023 (3)−0.001 (3)
C200.060 (4)0.103 (6)0.062 (4)0.008 (4)−0.010 (3)−0.007 (4)
C210.060 (4)0.090 (5)0.050 (3)0.008 (3)0.000 (3)−0.012 (3)

Geometric parameters (Å, °)

I1—Cu1i2.5760 (8)C7—C81.391 (7)
I1—Cu12.6317 (8)C7—H70.9300
I1—Cu22.7212 (8)C8—C91.384 (7)
I2—Cu22.4674 (7)C8—C161.490 (6)
Cu1—N12.029 (4)C9—C101.387 (7)
Cu1—N22.212 (4)C9—H90.9300
Cu1—I1i2.5760 (8)C10—C111.478 (6)
Cu1—Cu1i2.5982 (12)C11—C121.393 (7)
Cu1—Cu22.6604 (11)C12—C131.367 (7)
Cu2—N32.014 (4)C12—H120.9300
Cu2—N22.449 (4)C13—C141.384 (8)
N1—C51.340 (6)C13—H130.9300
N1—C11.346 (7)C14—C151.358 (7)
N2—C61.343 (6)C14—H140.9300
N2—C101.352 (6)C15—H150.9300
N3—C151.343 (6)C16—C171.373 (7)
N3—C111.349 (6)C16—C211.387 (8)
C1—C21.356 (9)C17—C181.373 (8)
C1—H10.9300C17—H170.9300
C2—C31.377 (10)C18—C191.369 (9)
C2—H20.9300C18—H180.9300
C3—C41.383 (9)C19—C201.365 (9)
C3—H30.9300C19—H190.9300
C4—C51.377 (7)C20—C211.395 (8)
C4—H40.9300C20—H200.9300
C5—C61.484 (7)C21—H210.9300
C6—C71.385 (7)
Cu1i—I1—Cu159.85 (2)N1—C5—C4121.3 (5)
Cu1i—I1—Cu2102.16 (2)N1—C5—C6115.6 (4)
Cu1—I1—Cu259.58 (2)C4—C5—C6123.1 (5)
N1—Cu1—N277.43 (15)N2—C6—C7122.3 (4)
N1—Cu1—I1i123.67 (13)N2—C6—C5115.1 (4)
N2—Cu1—I1i99.72 (10)C7—C6—C5122.7 (4)
N1—Cu1—Cu1i148.60 (13)C6—C7—C8120.5 (4)
N2—Cu1—Cu1i133.94 (11)C6—C7—H7119.7
I1i—Cu1—Cu1i61.14 (3)C8—C7—H7119.7
N1—Cu1—I1107.45 (13)C9—C8—C7116.5 (4)
N2—Cu1—I1121.33 (11)C9—C8—C16121.6 (5)
I1i—Cu1—I1120.15 (2)C7—C8—C16121.9 (4)
Cu1i—Cu1—I159.01 (3)C8—C9—C10120.9 (5)
N1—Cu1—Cu291.95 (12)C8—C9—H9119.5
N2—Cu1—Cu259.51 (10)C10—C9—H9119.5
I1i—Cu1—Cu2135.42 (3)N2—C10—C9121.7 (5)
Cu1i—Cu1—Cu2103.24 (4)N2—C10—C11116.5 (4)
I1—Cu1—Cu261.89 (2)C9—C10—C11121.7 (5)
N3—Cu2—N275.98 (15)N3—C11—C12121.6 (4)
N3—Cu2—I2137.12 (12)N3—C11—C10116.0 (4)
N2—Cu2—I2102.33 (9)C12—C11—C10122.4 (4)
N3—Cu2—Cu188.18 (13)C13—C12—C11119.2 (5)
N2—Cu2—Cu151.10 (9)C13—C12—H12120.4
I2—Cu2—Cu1124.69 (3)C11—C12—H12120.4
N3—Cu2—I1100.63 (11)C12—C13—C14119.6 (5)
N2—Cu2—I1109.59 (9)C12—C13—H13120.2
I2—Cu2—I1119.33 (3)C14—C13—H13120.2
Cu1—Cu2—I158.54 (2)C15—C14—C13117.9 (5)
C5—N1—C1118.2 (5)C15—C14—H14121.0
C5—N1—Cu1116.7 (3)C13—C14—H14121.0
C1—N1—Cu1125.1 (4)N3—C15—C14124.4 (5)
C6—N2—C10118.0 (4)N3—C15—H15117.8
C6—N2—Cu1108.6 (3)C14—C15—H15117.8
C10—N2—Cu1127.1 (3)C17—C16—C21117.0 (5)
C6—N2—Cu2125.8 (3)C17—C16—C8122.2 (5)
C10—N2—Cu299.8 (3)C21—C16—C8120.8 (5)
Cu1—N2—Cu269.39 (11)C16—C17—C18122.2 (6)
C15—N3—C11117.3 (4)C16—C17—H17118.9
C15—N3—Cu2124.1 (3)C18—C17—H17118.9
C11—N3—Cu2118.5 (3)C19—C18—C17119.8 (6)
N1—C1—C2123.7 (6)C19—C18—H18120.1
N1—C1—H1118.1C17—C18—H18120.1
C2—C1—H1118.1C20—C19—C18120.3 (6)
C1—C2—C3118.2 (6)C20—C19—H19119.8
C1—C2—H2120.9C18—C19—H19119.8
C3—C2—H2120.9C19—C20—C21119.2 (7)
C2—C3—C4119.2 (6)C19—C20—H20120.4
C2—C3—H3120.4C21—C20—H20120.4
C4—C3—H3120.4C16—C21—C20121.5 (6)
C5—C4—C3119.5 (6)C16—C21—H21119.3
C5—C4—H4120.3C20—C21—H21119.3
C3—C4—H4120.3
Cu1i—I1—Cu1—N1148.74 (13)I2—Cu2—N3—C15103.2 (4)
Cu2—I1—Cu1—N1−82.68 (13)Cu1—Cu2—N3—C15−113.5 (4)
Cu1i—I1—Cu1—N2−125.60 (13)I1—Cu2—N3—C15−56.0 (4)
Cu2—I1—Cu1—N22.98 (12)N2—Cu2—N3—C1111.9 (3)
Cu1i—I1—Cu1—I1i0.0I2—Cu2—N3—C11−81.2 (4)
Cu2—I1—Cu1—I1i128.58 (4)Cu1—Cu2—N3—C1162.1 (3)
Cu2—I1—Cu1—Cu1i128.58 (4)I1—Cu2—N3—C11119.6 (3)
Cu1i—I1—Cu1—Cu2−128.58 (4)C5—N1—C1—C20.6 (10)
N1—Cu1—Cu2—N3−147.57 (16)Cu1—N1—C1—C2−179.8 (5)
N2—Cu1—Cu2—N3−73.40 (16)N1—C1—C2—C31.3 (11)
I1i—Cu1—Cu2—N3−1.98 (12)C1—C2—C3—C4−2.5 (11)
Cu1i—Cu1—Cu2—N360.13 (11)C2—C3—C4—C51.9 (10)
I1—Cu1—Cu2—N3103.64 (11)C1—N1—C5—C4−1.2 (8)
N1—Cu1—Cu2—N2−74.17 (17)Cu1—N1—C5—C4179.1 (4)
I1i—Cu1—Cu2—N271.42 (12)C1—N1—C5—C6175.8 (5)
Cu1i—Cu1—Cu2—N2133.53 (12)Cu1—N1—C5—C6−3.8 (6)
I1—Cu1—Cu2—N2177.04 (12)C3—C4—C5—N10.0 (9)
N1—Cu1—Cu2—I22.84 (13)C3—C4—C5—C6−176.8 (6)
N2—Cu1—Cu2—I277.01 (12)C10—N2—C6—C71.0 (7)
I1i—Cu1—Cu2—I2148.43 (3)Cu1—N2—C6—C7−153.0 (4)
Cu1i—Cu1—Cu2—I2−149.46 (4)Cu2—N2—C6—C7129.4 (4)
I1—Cu1—Cu2—I2−105.95 (4)C10—N2—C6—C5−178.8 (4)
N1—Cu1—Cu2—I1108.79 (12)Cu1—N2—C6—C527.1 (5)
N2—Cu1—Cu2—I1−177.04 (12)Cu2—N2—C6—C5−50.4 (6)
I1i—Cu1—Cu2—I1−105.62 (4)N1—C5—C6—N2−17.4 (7)
Cu1i—Cu1—Cu2—I1−43.51 (3)C4—C5—C6—N2159.6 (5)
Cu1i—I1—Cu2—N3−37.47 (13)N1—C5—C6—C7162.7 (5)
Cu1—I1—Cu2—N3−81.21 (13)C4—C5—C6—C7−20.3 (8)
Cu1i—I1—Cu2—N241.30 (10)N2—C6—C7—C8−1.6 (8)
Cu1—I1—Cu2—N2−2.44 (10)C5—C6—C7—C8178.3 (5)
Cu1i—I1—Cu2—I2158.68 (3)C6—C7—C8—C91.3 (8)
Cu1—I1—Cu2—I2114.93 (4)C6—C7—C8—C16−178.0 (5)
Cu1i—I1—Cu2—Cu143.74 (3)C7—C8—C9—C10−0.6 (8)
N2—Cu1—N1—C513.9 (4)C16—C8—C9—C10178.8 (5)
I1i—Cu1—N1—C5−79.5 (4)C6—N2—C10—C9−0.3 (7)
Cu1i—Cu1—N1—C5−168.2 (3)Cu1—N2—C10—C9148.4 (4)
I1—Cu1—N1—C5133.2 (4)Cu2—N2—C10—C9−140.1 (4)
Cu2—Cu1—N1—C572.1 (4)C6—N2—C10—C11178.2 (4)
N2—Cu1—N1—C1−165.7 (5)Cu1—N2—C10—C11−33.1 (6)
I1i—Cu1—N1—C1100.9 (5)Cu2—N2—C10—C1138.4 (5)
Cu1i—Cu1—N1—C112.2 (6)C8—C9—C10—N20.1 (8)
I1—Cu1—N1—C1−46.4 (5)C8—C9—C10—C11−178.4 (5)
Cu2—Cu1—N1—C1−107.5 (5)C15—N3—C11—C121.4 (7)
N1—Cu1—N2—C6−22.3 (3)Cu2—N3—C11—C12−174.5 (4)
I1i—Cu1—N2—C6100.2 (3)C15—N3—C11—C10−179.2 (4)
Cu1i—Cu1—N2—C6159.2 (3)Cu2—N3—C11—C104.9 (6)
I1—Cu1—N2—C6−125.3 (3)N2—C10—C11—N3−34.7 (6)
Cu2—Cu1—N2—C6−122.2 (3)C9—C10—C11—N3143.8 (5)
N1—Cu1—N2—C10−173.4 (4)N2—C10—C11—C12144.6 (5)
I1i—Cu1—N2—C10−50.8 (4)C9—C10—C11—C12−36.8 (7)
Cu1i—Cu1—N2—C108.2 (5)N3—C11—C12—C13−2.3 (8)
I1—Cu1—N2—C1083.7 (4)C10—C11—C12—C13178.3 (5)
Cu2—Cu1—N2—C1086.7 (4)C11—C12—C13—C141.6 (8)
N1—Cu1—N2—Cu299.89 (14)C12—C13—C14—C150.0 (8)
I1i—Cu1—N2—Cu2−137.55 (6)C11—N3—C15—C140.3 (8)
Cu1i—Cu1—N2—Cu2−78.55 (14)Cu2—N3—C15—C14175.9 (4)
I1—Cu1—N2—Cu2−3.05 (12)C13—C14—C15—N3−0.9 (9)
N3—Cu2—N2—C6−162.3 (4)C9—C8—C16—C17−164.7 (5)
I2—Cu2—N2—C6−26.4 (4)C7—C8—C16—C1714.7 (8)
Cu1—Cu2—N2—C698.5 (4)C9—C8—C16—C2116.6 (8)
I1—Cu2—N2—C6101.2 (4)C7—C8—C16—C21−164.0 (5)
N3—Cu2—N2—C10−26.9 (3)C21—C16—C17—C18−0.9 (9)
I2—Cu2—N2—C10109.0 (3)C8—C16—C17—C18−179.6 (6)
Cu1—Cu2—N2—C10−126.1 (3)C16—C17—C18—C191.4 (10)
I1—Cu2—N2—C10−123.4 (3)C17—C18—C19—C20−1.1 (11)
N3—Cu2—N2—Cu199.16 (15)C18—C19—C20—C210.4 (11)
I2—Cu2—N2—Cu1−124.90 (7)C17—C16—C21—C200.2 (9)
I1—Cu2—N2—Cu12.68 (11)C8—C16—C21—C20178.9 (6)
N2—Cu2—N3—C15−163.7 (4)C19—C20—C21—C160.0 (11)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2432).

References

  • Andres, P. R. & Schubert, U. S. (2004). Adv. Mater.16, 1043–1068.
  • Bruker (2002). SMART, SAINT and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Constable, E. C., Edwards, A. J., Hannon, M. J. & Raithby, P. R. (1994). J. Chem. Soc. Chem. Commun. pp. 1991–1992.
  • Constable, E. C., Housecroft, C. E., Neuburger, M., Schaffner, S. & Shardlow, E. J. (2005). CrystEngComm, 7, 599–602.
  • Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47–54.
  • Hofmeier, H. & Schubert, U. S. (2004). Chem. Soc. Rev.33, 373–399. [PubMed]
  • Hou, L. & Li, D. (2005). Inorg. Chem. Commun.8, 128–130.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Thompson, A. M. W. C. (1997). Coord. Chem. Rev.160, 1–52.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography