PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m39–m40.
Published online 2007 December 6. doi:  10.1107/S1600536807062253
PMCID: PMC2914926

Decaaqua­dioxidobis[μ3-N-(phospho­n­atometh­yl)imino­diacetato]­dizinc(II)­divanadium(IV) dihydrate

Abstract

The title compound, [Zn2V2(C5H6NO7P)2O2(H2O)10]·2H2O, contains a [V2O2(pmida)2]4− dimeric anionic unit [where H4pmida is N-(phosphono­meth­yl)imino­diacetic acid] lying on a centre of symmetry which is exo-coordinated via the two deprotonated phospho­nate groups to two Zn2+ cations, with the coordination environment of Zn completed by five water mol­ecules. The crystal packing is mediated by an extensive network of strong and highly directional O—H(...)O hydrogen bonds involving the water mol­ecules (coordinated and uncoordinated) and the functional groups of pmida4−, leading to a three-dimensional supra­molecular network.

Related literature

For related literature, see: Cunha-Silva, Mafra et al. (2007 [triangle]); Cunha-Silva, Shi et al. (2007 [triangle]); Shi et al. (2007 [triangle]); Mafra et al. (2006 [triangle]); Shi, Paz, Girginova, Amaral et al. (2006 [triangle]); Shi, Paz, Girginova, Rocha et al. (2006 [triangle]); Shi, Almeida Paz, Trindade & Rocha (2006 [triangle]); Paz, Rocha, Klinowski et al. (2005 [triangle]); Almeida Paz, Shi, Mafra et al. (2005 [triangle]); Almeida Paz, Shi, Trindade et al. (2005 [triangle]); Shi et al. (2005 [triangle]); Paz et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00m39-scheme1.jpg

Experimental

Crystal data

  • [Zn2V2(C5H6NO7P)2O2(H2O)10]·2H2O
  • M r = 926.97
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00m39-efi1.jpg
  • a = 10.0161 (5) Å
  • b = 14.8811 (7) Å
  • c = 10.8298 (5) Å
  • β = 111.147 (2)°
  • V = 1505.48 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.40 mm−1
  • T = 293 (2) K
  • 0.22 × 0.14 × 0.10 mm

Data collection

  • Bruker Kappa APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998 [triangle]) T min = 0.621, T max = 0.796
  • 95509 measured reflections
  • 4040 independent reflections
  • 3765 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.077
  • S = 1.04
  • 4040 reflections
  • 238 parameters
  • 15 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.06 e Å−3
  • Δρmin = −0.87 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Bruker 2001 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062253/bg2149sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062253/bg2149Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support (grant No. POCI-PPCDT/QUI/58377/2004 supported by FEDER), for specific funding toward the purchase of the single-crystal diffractometer, and also for Postdoctoral Research Grants SFRH/BPD/14410/2003 (to LCS) and SFRH/BPD/9309/2002 (to FNS).

supplementary crystallographic information

Comment

Research on highly crystalline organic–inorganic hybrids, in particular those belonging to the family of coordination polymers, has received a considerable attention over the last two decades. Such occurs as a direct consequence of the fascinating structural architectures achieved by assembling organic ligands and metal centres which, in many cases, can be allied with interesting potential applications (e.g. gas storage, separation, catalysis, guest exchange, magnetic or optical sensors). Following our ongoing research toward the hydrothermal synthesis and structural characterization of this type of materials, we recently focused our attention on the use of multifunctional ligands such as N-(phosphonomethyl)iminodiacetic acid (H4pmida) (Cunha-Silva, Shi et al., 2007; Mafra et al., 2006; Shi, Paz, Girginova, Amaral et al., 2006; Shi, Paz, Girginova, Rocha et al., 2006; Shi, Almeida Paz, Trindade & Rocha, 2006; Paz, Rocha, Klinowski et al., 2005; Almeida Paz, Shi, Mafra et al., 2005; Almeida Paz, Shi, Trindade et al., 2005; Shi et al., 2005; Paz et al., 2004), 1-hydroxyethylidene-1,1-diphosphonic acid (H5hedp) (Shi et al., 2007), and nitrilotris(methylenephosphonic acid) (H6nmp) (Cunha-Silva, Mafra et al., 2007), we report here the structural details of the title compound, [Zn2V2O2(pmida)2(H2O)10].2H2O (I) [where pmida4– stands for C5H6NO7P4-].

The structure of (I) contains two crystallographically unique metal centres, Zn1 and V1, both exhibiting octahedral coordination geometries, {ZnO6} and {VO5N} (see table of selected geometric parameters and Fig. 1). Zn1 is coordinated by five O atoms of five crystalographically independent water molecules and one O atom from the µ3-bridging phosphonate group of pmida4- (Fig. 1), with the overall coordination geometry resembling a slightly distorted octahedron [Zn—O bond lengths found in the 2.0133 (14)–2.1660 (15) Å range; cis and trans O—Zn—O octahedral angles ranging from 87.09 (8) to 91.64 (6)° and from 177.27 (7) to 178.11 (7)°, respectively; see table of selected geometric parameters].

The two symmetry-related Zn2+ cations of the neutral tetranuclear [Zn2V2O2(pmida)2(H2O)10] molecule depicted in Fig. 1 are connected through the phosphonate groups belonging to the central centrosymmetric dimeric anionic [V2O2(pmida)2]4- unit, with intermetallic Zn1···Zn1i, Zn1···V1 and V1···V1i distances of 10.0170 (5), 3.2447 (5) and 3.8773 (5) Å, respectively [symmetry code: (i) 2 - x, 1 - y, 1 - z]. It is of considerable importance to emphasize that the geometrical aspects of this dimeric anionic unit are typical and in good agreement with those described in detail in our previous publications (Shi et al., 2007; Shi, Paz, Girginova, Amaral et al., 2006; Shi, Paz, Girginova, Rocha et al., 2006; Shi, Almeida Paz, Trindade & Rocha, 2006; Paz, Rocha, Klinowski et al., 2005; Almeida Paz, Shi, Mafra et al., 2005; Almeida Paz, Shi, Trindade et al., 2005; Shi et al., 2005; Paz et al., 2004). V1 is connected to one oxo group and to two pmida4- ligands, with the geometry of the first coordination sphere resembling a highly distorted octahedron, which is composed by one short V—O bond [1.6088 (16) Å], four intermediate V—O bonds [1.9890 (12)–2.0321 (14) Å] and a long V—N bond [2.3590 (16) Å]; the cis and trans internal octahedral angles range from 86.67 (6) to 103.84 (8)°, and from 154.45 (6) to 169.79 (8)°, respectively. Noteworthy is the structural evidence of the notable trans effect of the oxo group over the long V—N distance (see Table of selected geometric parameters).

Individual [Zn2V2O2(pmida)2(H2O)10] molecular units close pack with the water molecules of crystallization in a typical brick-wall-like fashion in the bc plane of the unit cell (Fig. 2), mediated by an extensive network of strong and highly directional O—H···O hydrogen bonding interactions (see Table summarizing the geometrical aspects of the hydrogen bonds).

Experimental

Starting materials were purchased from commercial sources and were used as received without further purification: N-(phosphonomethyl)iminodiacetic acid hydrate (H4pmida, C5H10NO7P, 97%, Fluka), potassium metavanadate (KVO3, 98%, Aldrich), zinc oxide (ZnO, 98%, Panreac), imidazole (C3H4N2, 99.0%, Panreac) and adipic acid (HOOC(CH2)4COOH, 99%, Aldrich).

A mixture containing 0.26 g of KVO3, 0.15 g of ZnO, 0.42 g of H4pmida, 0.13 g of imidazole and 0.27 g of adipic acid in ca 9 g of distilled water, was stirred thoroughly at ambient temperature for 30 minutes, yielding a suspension with a molar composition of ca 1:1:1:1:1:270, respectively, which was transferred to a PTFE-lined stainless steel reaction vessel (total volume ca 40 ml). The reaction vessel was placed inside a preheated oven at 473 K for one day, after which the temperature was decreased to 373 K allowing the reaction to proceed for another four days. After reacting, under autogeneous pressure and static conditions, the vessel was removed from the oven and left to cool to ambient temperature before opening. Small amounts of green and/or blue mixed powders of unknown phases were readily separated from the mother liquor by vacuum filtering. Large single crystals of the title compound were isolated by slow evaporation (in open air) of the mother liquor over the period of one week. It is of considerable importance to emphasize that similar reactions where imidazole and adipic acid were not included in the starting reactive mixture failed in the isolation of the title material.

Refinement

H atoms bound to carbon were placed at idealized positions and allowed to ride on their parent atoms with Uiso fixed at 1.2×Ueq(C). H atoms associated with the five coordinated water molecules were markedly visible in difference Fourier maps and were included in the structural model for subsequent least-squares refinement cycles with the O—H and H···H distances restrained to 0.90 (3) and 1.47 (3) Å, respectively, in order to ensure a chemically reasonable geometry for these chemical moieties. These H atoms were allowed to ride on their parent atoms with Uiso fixed at 1.5×Ueq(O).

The crystallographically unique O6W water molecule of crystallization was directly located from difference Fourier maps and refined assuming a full site occupancy and a thermal anisotropic displacement behaviour. The H atoms associated with this chemical moiety could not be unequivocally located from difference Fourier maps. Additionally, attempts to place the two H atoms in calculated positions did not produce a chemically reasonable structural model, in particular concerning the geometry of the resulting hydrogen bonding interactions. Therefore, these H atoms were omitted from the final structural model but were included in the empirical chemical formula.

Figures

Fig. 1.
Schematic representation of the tetranuclear centrosymmetric [Zn2V2O2(pmida)2(H2O)10] molecular unit, showing the labelling scheme for all non-H atoms. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small ...
Fig. 2.
Crystal packing of the title compound viewed in perspective along the (a) [001], (b) [100] and (c) [010] directions of the unit cell. Hydrogen bonds are represented as orange dashed lines.

Crystal data

[Zn2V2(C5H6NO7P)2O2(H2O)10]·2H2OF000 = 940
Mr = 926.97Dx = 2.045 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9009 reflections
a = 10.0161 (5) Åθ = 2.6–37.6º
b = 14.8811 (7) ŵ = 2.40 mm1
c = 10.8298 (5) ÅT = 293 (2) K
β = 111.147 (2)ºPrism, blue
V = 1505.48 (12) Å30.22 × 0.14 × 0.10 mm
Z = 2

Data collection

Bruker X8 APEXII Kappa CCD diffractometer4040 independent reflections
Radiation source: fine-focus sealed tube3765 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.028
T = 293(2) Kθmax = 29.1º
Thin–slice ω and [var phi] scansθmin = 3.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1998)h = −13→13
Tmin = 0.621, Tmax = 0.796k = −20→20
95509 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077  w = 1/[σ2(Fo2) + (0.038P)2 + 2.056P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
4040 reflectionsΔρmax = 1.06 e Å3
238 parametersΔρmin = −0.87 e Å3
15 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. See dedicated section in the main paper
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.47946 (2)0.566124 (16)0.26276 (2)0.02202 (7)
V11.01192 (3)0.52639 (2)0.74230 (3)0.01679 (8)
P10.81721 (5)0.55866 (3)0.44467 (5)0.01775 (10)
N10.98913 (17)0.66771 (11)0.63798 (15)0.0188 (3)
O50.85567 (14)0.49988 (10)0.57024 (13)0.0223 (3)
O70.66854 (14)0.59666 (10)0.40459 (14)0.0242 (3)
O41.16206 (16)0.60558 (10)0.87361 (13)0.0252 (3)
C50.9481 (2)0.65025 (13)0.49415 (17)0.0199 (3)
H5A1.03230.63400.47470.024*
H5B0.90720.70410.44460.024*
O60.83989 (15)0.50552 (10)0.33263 (14)0.0249 (3)
O20.86146 (16)0.59104 (10)0.79428 (16)0.0275 (3)
C41.1990 (2)0.68247 (13)0.84317 (19)0.0229 (4)
C10.8075 (2)0.66657 (14)0.7474 (2)0.0239 (4)
O81.0159 (2)0.43890 (11)0.83081 (18)0.0348 (4)
C31.1313 (2)0.71027 (15)0.69835 (19)0.0263 (4)
H3A1.12130.77510.69220.032*
H3B1.19240.69200.65090.032*
C20.8762 (2)0.71885 (14)0.6657 (2)0.0266 (4)
H2A0.80270.73590.58240.032*
H2B0.91760.77360.71250.032*
O31.28796 (19)0.73187 (12)0.92367 (16)0.0371 (4)
O10.70218 (18)0.69941 (11)0.76509 (19)0.0360 (4)
O1W0.5041 (2)0.43314 (11)0.32805 (19)0.0392 (4)
H1W0.440 (3)0.390 (2)0.288 (3)0.059*
H2W0.528 (4)0.419 (2)0.414 (2)0.059*
O2W0.36824 (16)0.59655 (11)0.39610 (15)0.0266 (3)
H3W0.348 (3)0.6535 (14)0.402 (3)0.040*
H4W0.298 (3)0.5638 (17)0.401 (3)0.040*
O3W0.28954 (18)0.52927 (14)0.11685 (17)0.0409 (4)
H5W0.238 (4)0.560 (2)0.045 (3)0.061*
H6W0.234 (4)0.491 (2)0.136 (3)0.061*
O4W0.45023 (17)0.69926 (11)0.19464 (16)0.0304 (3)
H7W0.397 (3)0.706 (2)0.113 (2)0.046*
H8W0.531 (3)0.727 (2)0.205 (3)0.046*
O5W0.58091 (19)0.53840 (17)0.12317 (18)0.0446 (5)
H9W0.666 (3)0.513 (2)0.170 (3)0.067*
H10W0.598 (4)0.574 (2)0.068 (3)0.067*
O6W0.5884 (6)0.6734 (4)−0.0345 (5)0.1474 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.01727 (12)0.02490 (13)0.01985 (12)−0.00060 (8)0.00183 (8)0.00210 (8)
V10.01574 (14)0.01789 (15)0.01586 (14)0.00001 (10)0.00464 (11)0.00076 (10)
P10.01270 (19)0.0220 (2)0.0165 (2)−0.00024 (16)0.00279 (16)−0.00184 (16)
N10.0182 (7)0.0201 (7)0.0165 (7)−0.0029 (6)0.0045 (5)−0.0002 (5)
O50.0185 (6)0.0238 (6)0.0206 (6)−0.0037 (5)0.0023 (5)0.0009 (5)
O70.0142 (6)0.0304 (7)0.0239 (6)0.0025 (5)0.0018 (5)−0.0048 (6)
O40.0279 (7)0.0252 (7)0.0171 (6)−0.0049 (6)0.0017 (5)0.0016 (5)
C50.0195 (8)0.0232 (8)0.0152 (7)−0.0024 (7)0.0041 (6)0.0014 (6)
O60.0177 (6)0.0331 (7)0.0233 (6)−0.0002 (5)0.0067 (5)−0.0079 (6)
O20.0287 (7)0.0247 (7)0.0357 (8)0.0029 (6)0.0196 (6)0.0039 (6)
C40.0210 (8)0.0251 (9)0.0190 (8)−0.0035 (7)0.0026 (7)0.0003 (7)
C10.0227 (9)0.0225 (9)0.0270 (9)−0.0022 (7)0.0094 (7)−0.0053 (7)
O80.0410 (9)0.0272 (8)0.0383 (9)0.0017 (7)0.0169 (7)0.0086 (7)
C30.0248 (9)0.0288 (10)0.0202 (8)−0.0110 (8)0.0021 (7)0.0036 (7)
C20.0337 (10)0.0189 (8)0.0299 (10)0.0036 (8)0.0148 (8)0.0009 (7)
O30.0405 (9)0.0334 (8)0.0242 (7)−0.0151 (7)−0.0043 (7)0.0007 (6)
O10.0305 (8)0.0297 (8)0.0538 (10)0.0047 (6)0.0226 (8)−0.0033 (7)
O1W0.0428 (10)0.0270 (8)0.0340 (9)−0.0057 (7)−0.0029 (7)0.0044 (7)
O2W0.0235 (7)0.0261 (7)0.0316 (7)−0.0003 (6)0.0117 (6)0.0027 (6)
O3W0.0269 (8)0.0578 (12)0.0266 (8)−0.0179 (8)−0.0040 (6)0.0167 (8)
O4W0.0274 (7)0.0287 (8)0.0303 (8)−0.0041 (6)0.0046 (6)0.0066 (6)
O5W0.0281 (8)0.0761 (14)0.0268 (8)0.0078 (9)0.0064 (7)−0.0058 (9)
O6W0.163 (4)0.159 (5)0.143 (4)−0.009 (4)0.083 (4)0.009 (3)

Geometric parameters (Å, °)

Zn1—O72.0133 (14)C5—H5B0.9700
Zn1—O3W2.0609 (16)O6—V1i1.9890 (14)
Zn1—O1W2.0860 (17)O2—C11.271 (3)
Zn1—O4W2.0974 (16)C4—O31.238 (2)
Zn1—O5W2.1440 (18)C4—C31.524 (3)
Zn1—O2W2.1660 (15)C1—O11.239 (3)
V1—O81.6086 (16)C1—C21.517 (3)
V1—O6i1.9890 (14)C3—H3A0.9700
V1—O51.9932 (14)C3—H3B0.9700
V1—O22.0312 (15)C2—H2A0.9700
V1—O42.0321 (14)C2—H2B0.9700
V1—N12.3590 (16)O1W—H1W0.90 (2)
P1—O71.5030 (14)O1W—H2W0.90 (2)
P1—O61.5324 (15)O2W—H3W0.88 (2)
P1—O51.5443 (14)O2W—H4W0.87 (2)
P1—C51.8323 (19)O3W—H5W0.89 (2)
N1—C31.478 (2)O3W—H6W0.88 (2)
N1—C21.481 (3)O4W—H7W0.86 (2)
N1—C51.484 (2)O4W—H8W0.88 (2)
O4—C41.282 (2)O5W—H9W0.90 (2)
C5—H5A0.9700O5W—H10W0.86 (2)
O7—Zn1—O3W177.43 (8)P1—O7—Zn1134.17 (9)
O7—Zn1—O1W89.53 (7)C4—O4—V1123.17 (12)
O3W—Zn1—O1W88.34 (7)N1—C5—P1109.58 (12)
O7—Zn1—O4W91.64 (6)N1—C5—H5A109.8
O3W—Zn1—O4W90.49 (7)P1—C5—H5A109.8
O1W—Zn1—O4W178.81 (7)N1—C5—H5B109.8
O7—Zn1—O5W91.53 (6)P1—C5—H5B109.8
O3W—Zn1—O5W87.09 (8)H5A—C5—H5B108.2
O1W—Zn1—O5W91.61 (9)P1—O6—V1i142.36 (9)
O4W—Zn1—O5W88.58 (8)C1—O2—V1123.99 (13)
O7—Zn1—O2W90.73 (6)O3—C4—O4123.37 (18)
O3W—Zn1—O2W90.71 (7)O3—C4—C3120.23 (18)
O1W—Zn1—O2W89.93 (7)O4—C4—C3116.37 (16)
O4W—Zn1—O2W89.83 (6)O1—C1—O2123.4 (2)
O5W—Zn1—O2W177.27 (7)O1—C1—C2118.61 (19)
O8—V1—O6i100.84 (8)O2—C1—C2118.02 (17)
O8—V1—O5103.84 (8)N1—C3—C4109.82 (15)
O6i—V1—O591.21 (6)N1—C3—H3A109.7
O8—V1—O294.57 (8)C4—C3—H3A109.7
O6i—V1—O2164.50 (7)N1—C3—H3B109.7
O5—V1—O286.67 (6)C4—C3—H3B109.7
O8—V1—O4101.49 (8)H3A—C3—H3B108.2
O6i—V1—O487.20 (6)N1—C2—C1113.27 (16)
O5—V1—O4154.45 (6)N1—C2—H2A108.9
O2—V1—O488.12 (6)C1—C2—H2A108.9
O8—V1—N1169.79 (8)N1—C2—H2B108.9
O6i—V1—N188.57 (6)C1—C2—H2B108.9
O5—V1—N179.69 (6)H2A—C2—H2B107.7
O2—V1—N175.95 (6)Zn1—O1W—H1W122 (2)
O4—V1—N174.78 (6)Zn1—O1W—H2W121 (2)
O7—P1—O6112.33 (8)H1W—O1W—H2W103 (3)
O7—P1—O5111.96 (8)Zn1—O2W—H3W115.9 (19)
O6—P1—O5110.11 (9)Zn1—O2W—H4W123 (2)
O7—P1—C5109.55 (9)H3W—O2W—H4W109 (2)
O6—P1—C5108.69 (8)Zn1—O3W—H5W128 (2)
O5—P1—C5103.82 (8)Zn1—O3W—H6W119 (2)
C3—N1—C2111.98 (16)H5W—O3W—H6W109 (3)
C3—N1—C5113.40 (15)Zn1—O4W—H7W115 (2)
C2—N1—C5111.14 (15)Zn1—O4W—H8W113 (2)
C3—N1—V1105.00 (11)H7W—O4W—H8W106 (3)
C2—N1—V1108.06 (11)Zn1—O5W—H9W106 (2)
C5—N1—V1106.80 (11)Zn1—O5W—H10W130 (3)
P1—O5—V1124.99 (8)H9W—O5W—H10W105 (3)
O8—V1—N1—C395.2 (5)O5—V1—O4—C4−10.3 (3)
O6i—V1—N1—C3−62.07 (12)O2—V1—O4—C4−88.53 (16)
O5—V1—N1—C3−153.56 (13)N1—V1—O4—C4−12.59 (15)
O2—V1—N1—C3117.32 (13)C3—N1—C5—P1155.80 (14)
O4—V1—N1—C325.42 (12)C2—N1—C5—P1−77.01 (17)
O8—V1—N1—C2−24.5 (5)V1—N1—C5—P140.64 (13)
O6i—V1—N1—C2178.27 (13)O7—P1—C5—N189.70 (14)
O5—V1—N1—C286.78 (13)O6—P1—C5—N1−147.23 (12)
O2—V1—N1—C2−2.35 (12)O5—P1—C5—N1−30.04 (15)
O4—V1—N1—C2−94.24 (13)O7—P1—O6—V1i147.90 (15)
O8—V1—N1—C5−144.1 (4)O5—P1—O6—V1i−86.60 (17)
O6i—V1—N1—C558.62 (11)C5—P1—O6—V1i26.51 (19)
O5—V1—N1—C5−32.88 (11)O8—V1—O2—C1−176.55 (17)
O2—V1—N1—C5−122.00 (12)O6i—V1—O2—C19.6 (4)
O4—V1—N1—C5146.11 (12)O5—V1—O2—C1−72.91 (17)
O7—P1—O5—V1−116.85 (10)O4—V1—O2—C182.07 (17)
O6—P1—O5—V1117.44 (10)N1—V1—O2—C17.29 (16)
C5—P1—O5—V11.24 (12)V1—O4—C4—O3178.20 (17)
O8—V1—O5—P1−173.68 (11)V1—O4—C4—C3−4.0 (3)
O6i—V1—O5—P1−72.20 (11)V1—O2—C1—O1169.44 (16)
O2—V1—O5—P192.43 (11)V1—O2—C1—C2−10.6 (3)
O4—V1—O5—P113.8 (2)C2—N1—C3—C483.0 (2)
N1—V1—O5—P116.12 (10)C5—N1—C3—C4−150.29 (17)
O6—P1—O7—Zn121.40 (16)V1—N1—C3—C4−34.07 (19)
O5—P1—O7—Zn1−103.09 (13)O3—C4—C3—N1−153.7 (2)
C5—P1—O7—Zn1142.29 (12)O4—C4—C3—N128.5 (3)
O1W—Zn1—O7—P152.88 (14)C3—N1—C2—C1−116.61 (19)
O4W—Zn1—O7—P1−127.34 (14)C5—N1—C2—C1115.43 (18)
O5W—Zn1—O7—P1−38.72 (15)V1—N1—C2—C1−1.4 (2)
O2W—Zn1—O7—P1142.81 (13)O1—C1—C2—N1−172.84 (19)
O8—V1—O4—C4177.18 (16)O2—C1—C2—N17.2 (3)
O6i—V1—O4—C476.69 (16)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1ii0.90 (2)1.88 (2)2.770 (2)169 (3)
O1W—H2W···O2Wii0.90 (2)1.95 (2)2.828 (2)164 (3)
O2W—H3W···O3iii0.88 (2)1.85 (2)2.725 (2)172 (3)
O2W—H4W···O5ii0.87 (2)1.93 (2)2.795 (2)173 (3)
O3W—H6W···O2ii0.88 (2)1.87 (2)2.733 (2)171 (3)
O3W—H5W···O4iv0.89 (2)1.86 (2)2.726 (2)164 (4)
O4W—H7W···O3iv0.86 (2)1.98 (2)2.837 (2)174 (3)
O4W—H8W···O1v0.88 (2)1.94 (2)2.799 (2)167 (3)
O5W—H9W···O60.90 (2)1.98 (3)2.805 (2)150 (4)
O5W—H10W···O6W0.86 (2)1.84 (3)2.656 (6)159 (4)

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x−1, −y+3/2, z−1/2; (iv) x−1, y, z−1; (v) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2149).

References

  • Almeida Paz, F. A., Shi, F.-N., Mafra, L., Makal, A., Wozniak, K., Trindade, T., Klinowski, J. & Rocha, J. (2005). Acta Cryst. E61, m1628–m1632.
  • Almeida Paz, F. A., Shi, F.-N., Trindade, T., Klinowski, J. & Rocha, J. (2005). Acta Cryst. E61, m2247–m2250.
  • Brandenburg, K. (2006). DIAMOND Version 3.1e. Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SHELXTL Version 6.12. Bruker AXS Inc. Madison, Wisconsin, USA.
  • Bruker (2005). SAINT-Plus Version 7.23a. Bruker AXS Inc. Madison, Wisconsin, USA.
  • Bruker (2006). APEX2 Version 2.1-RC13. Bruker AXS, Delft, The Netherlands.
  • Cunha-Silva, L., Mafra, L., Ananias, D., Carlos, L. D., Rocha, J. & Paz, F. A. A. (2007). Chem. Mater.19, 3527–3538.
  • Cunha-Silva, L., Shi, F.-N., Klinowski, J., Trindade, T., Rocha, J. & Almeida Paz, F. A. (2007). Acta Cryst. E63, m372–m375.
  • Mafra, L., Paz, F. A. A., Shi, F.-N., Rocha, J., Trindade, T., Fernandez, C., Makal, A., Wozniak, K. & Klinowski, J. (2006). Chem. Eur. J.12, 363–375. [PubMed]
  • Paz, F. A. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem.33, 113–125.
  • Paz, F. A. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759–2768.
  • Sheldrick, G. M. (1998). SADABS Version 2.01. Bruker AXS Inc. Madison, Wisconsin, USA.
  • Shi, F.-N., Almeida Paz, F. A., Trindade, T. & Rocha, J. (2006). Acta Cryst. E62, m335–m338.
  • Shi, F.-N., Cunha-Silva, L., Sá Ferreira, R. A., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2007). J. Am. Chem. Soc. doi: 10.1021/ja074119k.
  • Shi, F.-N., Paz, F. A. A., Girginova, P. I., Amaral, V. S., Rocha, J., Klinowski, J. & Trindade, T. (2006). Inorg. Chim. Acta, 359, 1147–1158.
  • Shi, F.-N., Paz, F. A. A., Girginova, P. I., Mafra, L., Amaral, V. S., Rocha, J., Makal, A., Wozniak, K., Klinowski, J. & Trindade, T. (2005). J. Mol. Struct.754, 51–60.
  • Shi, F.-N., Paz, F. A. A., Girginova, P. I., Rocha, J., Amaral, V. S., Klinowski, J. & Trindade, T. (2006). J. Mol. Struct.789, 200–208.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography