PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m37–m38.
Published online 2007 December 6. doi:  10.1107/S1600536807058928
PMCID: PMC2914925

Aqua­bis(3,5-dimethyl-1H-pyrazole-κN)(oxalato-κ2 O,O′)copper(II)

Abstract

In the title compound, [Cu(C2O4)(C5H8N2)2(H2O)], the CuII atom is coordinated in a slightly distorted square-pyramidal geometry by two N atoms belonging to the two 3,5-dimethyl-1H-pyrazole ligands, two O atoms of the oxalate anion providing an O,O′-chelating coordination mode, and an O atom of the water mol­ecule occupying the apical position. The crystal packing shows a well defined layer structure. Intra-layer connections are realised through a system of hydrogen bonds while the nature of the inter-layer inter­actions is completely hydro­phobic, including no hydrogen-bonding inter­actions.

Related literature

For related literature on metal oxalates and 1H-pyrazole complexes, see: Abdeljalil et al. (2006 [triangle]); Bataille & Louër (1999 [triangle]); Castillo et al. (2001 [triangle]); Naumov et al. (1995 [triangle]); Raptis et al. (1999 [triangle]); Strotmeyer et al. (2003 [triangle]); Tomyn et al. (2007 [triangle]); Warda (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00m37-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2O4)(C5H8N2)2(H2O)]
  • M r = 361.84
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00m37-efi1.jpg
  • a = 8.2597 (6) Å
  • b = 8.4010 (8) Å
  • c = 12.2288 (11) Å
  • α = 77.007 (4)°
  • β = 89.189 (6)°
  • γ = 62.436 (5)°
  • V = 729.00 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.53 mm−1
  • T = 120 (2) K
  • 0.23 × 0.13 × 0.08 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.720, T max = 0.888
  • 11529 measured reflections
  • 3765 independent reflections
  • 3186 reflections with I > 2σ(I)
  • R int = 0.069

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070
  • wR(F 2) = 0.175
  • S = 1.12
  • 3765 reflections
  • 204 parameters
  • H-atom parameters constrained
  • Δρmax = 0.80 e Å−3
  • Δρmin = −1.02 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807058928/hy2100sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807058928/hy2100Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank NATO for financial support (grant CBP. NUKR. CLG 982019). AIB thanks the DAAD for a scholarship under the Leonhard-Euler-Stipendium Programme.

supplementary crystallographic information

Comment

1H-Pyrazole and its 3,5-substituted derivatives have been widely used as bridging ligands in molecular magnetism and supramolecular chemistry for obtaining discrete oligonuclear complexes of high nuclearity and coordination polymers (Abdeljalil et al., 2006; Raptis et al., 1999; Warda, 1998). On the other hand, oxalate is an important polynucleative ligand as it can exhibit various bridging modes, which, together with the varied coordination preferences of metal ions, can result in the formation of oligonuclear species or compounds containing one-, two- and three-dimensional coordination polymers and frameworks (Castillo et al., 2001; Naumov et al., 1995; Bataille & Louër, 1999; Strotmeyer et al., 2003; Tomyn et al., 2007). Simultanetous use of 1H-pyrazole derivatives and oxalates can result in the creation of new molecular topologies or in obtaining mononuclear complexes with vacant donor atoms, which can be used as building blocks for the preparation of oligonuclear assemblies or coordination polymers.

The molecular structure of the title compound (Fig. 1) consists of a CuII ion as the central atom possessing a slightly distorted square-pyramidal geometry. The four equatorial positions are occupied by two N atoms belonging to the two monodentately coordinated 3,5-dimethyl-1H-pyrazole molecules and two O atoms of the oxalate anion coordinated in an O,O'-chelate mode forming a five-membered chelate ring. The axial position is occupied by the O atom of the water molecule (Table 1). A crystal packing diagram (Fig. 2) depicts a well defined layer structure along the c-axis direction. Each layer is formed with the help of O1—H···O and N—H···O hydrogen bonds (Table 2) while the nature of inter-layer interactions is utterly hydrophobic including no hydrogen bonding interactions.

Experimental

Cu(NO3)2.3H2O (0.242 g, 1 mmol) and 3,5-dimethyl-1H-pyrazole (0.961 g, 1 mmol) were dissolved in water (10 ml), and then a powder of K2C2O4.H2O (0.184 g, 1 mmol) was added to the obtained solution. The resulting mixture was stirred at 358 K for 25 min and filtered. Blue needle-like crystals suitable for X-ray analysis were formed from the filtrate in several minutes. They were filtered off and washed with diethyl ester (yield 67%). Analysis calculated for C12H18CuN4O5: C 39.83, H 5.01, N 15.48%; found: C 39.11, H 5.13, N 15.42%.

Refinement

H atoms on the ligand were positioned geometrically and refined as riding atoms, with C—H = 0.95Å (CH), 0.98Å (CH3), N—H = 0.88Å and with Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C, N) for the others. H atoms of the water molecule were located from a difference Fourier map and fixed with Uiso(H) = 1.5Ueq(O). The structure was refined as twinned. BASF parameter was refined to 0.307.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are shown at the 30% probability level.
Fig. 2.
A packing diagram for the title compound, showing the layers along the c-axis direction. Hydrogen bonds are indicated by dashed lines. H atoms not included in hydrogen bonds are omitted for clarity.

Crystal data

[Cu(C2O4)(C5H8N2)2(H2O)]Z = 2
Mr = 361.84F000 = 374
Triclinic, P1Dx = 1.648 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.2597 (6) ÅCell parameters from 33067 reflections
b = 8.4010 (8) Åθ = 1.0–27.5º
c = 12.2288 (11) ŵ = 1.53 mm1
α = 77.007 (4)ºT = 120 (2) K
β = 89.189 (6)ºPlate, blue
γ = 62.436 (5)º0.23 × 0.13 × 0.08 mm
V = 729.00 (11) Å3

Data collection

Nonius Kappa CCD diffractometer3765 independent reflections
Radiation source: fine-focus sealed tube3186 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.069
Detector resolution: 9 pixels mm-1θmax = 28.7º
T = 120(2) Kθmin = 2.8º
[var phi] and ω scansh = −11→11
Absorption correction: multi-scan(SADABS; Sheldrick, 2003)k = −11→11
Tmin = 0.720, Tmax = 0.888l = −16→16
11529 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.175  w = 1/[σ2(Fo2) + 4.1563P] where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
3765 reflectionsΔρmax = 0.80 e Å3
204 parametersΔρmin = −1.02 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.14007 (5)0.12441 (5)0.63070 (3)0.01550 (12)
O5−0.0055 (3)0.3021 (3)0.48971 (18)0.0169 (5)
O20.3431 (3)0.1554 (3)0.56547 (17)0.0177 (5)
O40.0332 (3)0.4796 (3)0.33510 (18)0.0224 (5)
O30.3977 (3)0.3252 (3)0.41587 (18)0.0185 (5)
O10.2189 (3)−0.1213 (3)0.55296 (19)0.0228 (5)
H10.3490−0.18610.53830.034*
H20.1570−0.19340.54820.034*
N2−0.0797 (3)0.1276 (3)0.6984 (2)0.0158 (5)
N1−0.2437 (3)0.2848 (4)0.6778 (2)0.0180 (6)
H3−0.25960.39440.64060.022*
N30.3058 (3)−0.0261 (4)0.7738 (2)0.0160 (5)
N40.4574 (3)−0.1886 (3)0.7756 (2)0.0163 (5)
H180.4959−0.23130.71560.020*
C2−0.3788 (4)0.2518 (4)0.7215 (3)0.0171 (6)
C1−0.5724 (4)0.4006 (5)0.7112 (3)0.0237 (7)
H4−0.58110.48350.75870.036*
H6−0.65210.34490.73580.036*
H5−0.61120.47150.63240.036*
C3−0.2992 (4)0.0638 (4)0.7711 (3)0.0185 (7)
H7−0.3591−0.00280.80860.022*
C4−0.1140 (4)−0.0081 (4)0.7551 (2)0.0146 (6)
C50.0343 (4)−0.2053 (4)0.7949 (3)0.0202 (7)
H100.1196−0.23640.73720.030*
H8−0.0210−0.28810.80830.030*
H90.1011−0.22010.86520.030*
C90.5419 (4)−0.2766 (4)0.8815 (3)0.0183 (7)
C100.7136 (4)−0.4587 (4)0.9037 (3)0.0229 (7)
H150.6822−0.55970.92630.034*
H160.7949−0.46590.96420.034*
H170.7761−0.46980.83490.034*
C80.4410 (4)−0.1676 (4)0.9506 (3)0.0189 (7)
H140.4654−0.19241.03000.023*
C70.2938 (4)−0.0112 (4)0.8806 (3)0.0172 (6)
C60.1419 (4)0.1515 (5)0.9110 (3)0.0243 (7)
H120.09740.25890.84600.036*
H130.18690.17920.97430.036*
H110.04140.12380.93290.036*
C110.2947 (4)0.2729 (4)0.4716 (2)0.0149 (6)
C120.0885 (4)0.3626 (4)0.4252 (3)0.0176 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01345 (19)0.0151 (2)0.0170 (2)−0.00671 (15)0.00082 (14)−0.00214 (15)
O50.0149 (10)0.0147 (11)0.0191 (11)−0.0066 (9)0.0009 (8)−0.0013 (9)
O20.0150 (11)0.0167 (12)0.0189 (11)−0.0065 (9)0.0008 (9)−0.0018 (9)
O40.0206 (11)0.0199 (12)0.0237 (12)−0.0091 (10)−0.0018 (9)−0.0005 (10)
O30.0181 (11)0.0157 (12)0.0221 (11)−0.0089 (9)0.0044 (9)−0.0036 (9)
O10.0174 (11)0.0246 (13)0.0310 (13)−0.0107 (10)0.0065 (9)−0.0138 (10)
N20.0137 (12)0.0110 (13)0.0179 (13)−0.0032 (10)−0.0006 (10)−0.0005 (10)
N10.0147 (13)0.0114 (13)0.0245 (14)−0.0039 (11)−0.0004 (11)−0.0033 (11)
N30.0174 (13)0.0135 (13)0.0179 (13)−0.0075 (11)0.0032 (10)−0.0049 (11)
N40.0144 (12)0.0152 (13)0.0163 (13)−0.0040 (11)0.0003 (10)−0.0048 (11)
C20.0146 (15)0.0147 (16)0.0221 (16)−0.0056 (12)0.0029 (12)−0.0080 (13)
C10.0154 (15)0.0176 (17)0.0361 (19)−0.0064 (13)0.0028 (14)−0.0063 (15)
C30.0213 (16)0.0181 (16)0.0218 (16)−0.0137 (14)0.0056 (13)−0.0054 (13)
C40.0185 (15)0.0122 (15)0.0137 (14)−0.0072 (13)0.0013 (12)−0.0040 (12)
C50.0207 (16)0.0095 (15)0.0251 (17)−0.0030 (13)0.0013 (13)−0.0037 (13)
C90.0188 (15)0.0168 (16)0.0219 (16)−0.0110 (13)0.0035 (13)−0.0040 (13)
C100.0208 (16)0.0145 (16)0.0264 (17)−0.0030 (13)−0.0009 (13)−0.0036 (14)
C80.0175 (16)0.0168 (16)0.0169 (15)−0.0047 (13)−0.0010 (12)−0.0013 (13)
C70.0188 (15)0.0166 (16)0.0182 (16)−0.0097 (13)0.0026 (12)−0.0051 (13)
C60.0222 (17)0.0233 (18)0.0237 (17)−0.0061 (14)0.0024 (14)−0.0094 (14)
C110.0139 (14)0.0128 (15)0.0203 (15)−0.0062 (12)0.0036 (12)−0.0087 (13)
C120.0171 (15)0.0197 (17)0.0175 (16)−0.0092 (13)0.0025 (12)−0.0066 (13)

Geometric parameters (Å, °)

Cu1—O21.946 (2)C1—H40.9800
Cu1—O51.971 (2)C1—H60.9800
Cu1—N21.975 (3)C1—H50.9800
Cu1—N32.002 (2)C3—C41.390 (4)
Cu1—O12.283 (2)C3—H70.9500
O5—C121.285 (4)C4—C51.503 (4)
O2—C111.261 (4)C5—H100.9800
O4—C121.225 (4)C5—H80.9800
O3—C111.256 (4)C5—H90.9800
O1—H10.9902C9—C81.367 (5)
O1—H20.9664C9—C101.497 (4)
N2—C41.341 (4)C10—H150.9800
N2—N11.359 (3)C10—H160.9800
N1—C21.345 (4)C10—H170.9800
N1—H30.8800C8—C71.408 (4)
N3—C71.337 (4)C8—H140.9500
N3—N41.355 (3)C7—C61.487 (4)
N4—C91.352 (4)C6—H120.9800
N4—H180.8800C6—H130.9800
C2—C31.383 (4)C6—H110.9800
C2—C11.490 (4)C11—C121.561 (4)
O2—Cu1—O584.54 (9)C4—C3—H7126.9
O2—Cu1—N2172.35 (10)N2—C4—C3110.0 (3)
O5—Cu1—N292.59 (9)N2—C4—C5122.3 (3)
O2—Cu1—N388.41 (10)C3—C4—C5127.7 (3)
O5—Cu1—N3170.11 (10)C4—C5—H10109.5
N2—Cu1—N393.53 (10)C4—C5—H8109.5
O2—Cu1—O189.05 (9)H10—C5—H8109.5
O5—Cu1—O191.85 (9)C4—C5—H9109.5
N2—Cu1—O198.15 (10)H10—C5—H9109.5
N3—Cu1—O194.96 (9)H8—C5—H9109.5
C12—O5—Cu1112.55 (18)N4—C9—C8106.8 (3)
C11—O2—Cu1112.86 (18)N4—C9—C10120.6 (3)
Cu1—O1—H1115.9C8—C9—C10132.6 (3)
Cu1—O1—H2130.8C9—C10—H15109.5
H1—O1—H2111.5C9—C10—H16109.5
C4—N2—N1105.8 (2)H15—C10—H16109.5
C4—N2—Cu1132.3 (2)C9—C10—H17109.5
N1—N2—Cu1121.3 (2)H15—C10—H17109.5
C2—N1—N2111.5 (3)H16—C10—H17109.5
C2—N1—H3124.2C9—C8—C7106.3 (3)
N2—N1—H3124.2C9—C8—H14126.9
C7—N3—N4106.3 (2)C7—C8—H14126.9
C7—N3—Cu1133.1 (2)N3—C7—C8109.3 (3)
N4—N3—Cu1120.31 (19)N3—C7—C6121.3 (3)
C9—N4—N3111.3 (3)C8—C7—C6129.3 (3)
C9—N4—H18124.4C7—C6—H12109.5
N3—N4—H18124.4C7—C6—H13109.5
N1—C2—C3106.5 (3)H12—C6—H13109.5
N1—C2—C1122.5 (3)C7—C6—H11109.5
C3—C2—C1131.0 (3)H12—C6—H11109.5
C2—C1—H4109.5H13—C6—H11109.5
C2—C1—H6109.5O3—C11—O2125.0 (3)
H4—C1—H6109.5O3—C11—C12118.7 (3)
C2—C1—H5109.5O2—C11—C12116.2 (3)
H4—C1—H5109.5O4—C12—O5127.2 (3)
H6—C1—H5109.5O4—C12—C11119.0 (3)
C2—C3—C4106.2 (3)O5—C12—C11113.7 (3)
C2—C3—H7126.9
O2—Cu1—O5—C12−3.4 (2)C1—C2—C3—C4179.7 (3)
N2—Cu1—O5—C12169.5 (2)N1—N2—C4—C3−0.5 (3)
O1—Cu1—O5—C12−92.3 (2)Cu1—N2—C4—C3−171.4 (2)
O5—Cu1—O2—C113.0 (2)N1—N2—C4—C5−179.4 (3)
N3—Cu1—O2—C11−170.0 (2)Cu1—N2—C4—C59.7 (5)
O1—Cu1—O2—C1195.0 (2)C2—C3—C4—N2−0.1 (4)
O5—Cu1—N2—C4134.5 (3)C2—C3—C4—C5178.7 (3)
N3—Cu1—N2—C4−53.3 (3)N3—N4—C9—C80.2 (4)
O1—Cu1—N2—C442.2 (3)N3—N4—C9—C10−179.6 (3)
O5—Cu1—N2—N1−35.3 (2)N4—C9—C8—C7−0.2 (4)
N3—Cu1—N2—N1137.0 (2)C10—C9—C8—C7179.5 (3)
O1—Cu1—N2—N1−127.5 (2)N4—N3—C7—C80.0 (3)
C4—N2—N1—C20.9 (3)Cu1—N3—C7—C8173.5 (2)
Cu1—N2—N1—C2173.1 (2)N4—N3—C7—C6−179.8 (3)
O2—Cu1—N3—C7123.6 (3)Cu1—N3—C7—C6−6.2 (5)
N2—Cu1—N3—C7−49.0 (3)C9—C8—C7—N30.1 (4)
O1—Cu1—N3—C7−147.5 (3)C9—C8—C7—C6179.9 (3)
O2—Cu1—N3—N4−63.5 (2)Cu1—O2—C11—O3175.7 (2)
N2—Cu1—N3—N4123.9 (2)Cu1—O2—C11—C12−2.2 (3)
O1—Cu1—N3—N425.4 (2)Cu1—O5—C12—O4−176.5 (3)
C7—N3—N4—C9−0.1 (3)Cu1—O5—C12—C113.1 (3)
Cu1—N3—N4—C9−174.7 (2)O3—C11—C12—O41.0 (4)
N2—N1—C2—C3−1.0 (4)O2—C11—C12—O4179.0 (3)
N2—N1—C2—C1179.8 (3)O3—C11—C12—O5−178.6 (3)
N1—C2—C3—C40.7 (3)O2—C11—C12—O5−0.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.991.882.798 (3)153
O1—H2···O5ii0.971.972.923 (3)168
N1—H3···O3iii0.882.032.857 (3)156
N4—H18···O3i0.881.972.845 (3)175

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z+1; (iii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2100).

References

  • Abdeljalil, E. F., Najib, B. L., Abdelali, K., El Bali, B. & Bolte, M. (2006). Acta Cryst. E62, m551–m552.
  • Bataille, T. & Louër, D. (1999). Acta Cryst. C55, 1760–1762.
  • Castillo, O., Luque, A., Lloret, F. & Romàn, P. (2001). Inorg. Chem. Commun.4, 350–353.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Naumov, D. Y., Virovets, A. V., Podberezskaya, N. V. & Boldyreva, E. V. (1995). Acta Cryst. C51, 60–62.
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Raptis, R., Georgakaki, I. & Hockless, D. (1999). Angew. Chem. Int. Ed.38, 1632–1634.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem.15, 529–547.
  • Tomyn, S. V., Gumienna-Kontecka, E., Fritsky, I. O., Iskenderov, T. S. & Światek-Kozłowska, J. (2007). Acta Cryst. E63, m438–m440.
  • Warda, S. A. (1998). Acta Cryst. C54, 916–918.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography