PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m36.
Published online 2007 December 6. doi:  10.1107/S1600536807059612
PMCID: PMC2914924

Bis{μ-4,4′,6,6′-tetra­bromo-2,2′-[o-phenyl­enebis(nitrilo­methyl­idyne)]­diphenol­ato}­bis­[(dimethyl­formamide)cadmium(II)]

Abstract

The Schiff base ligand derived from the condensation of 3,5-dibromo­salicylaldehyde and 1,2-phenyl­enediamine, in the presence of dimethyl­formamide, forms the centrosymmetric title neutral binuclear distorted complex, [Cd2(C20H10Br4N2O2)2(C3H7NO)2], with the two octa­hedral Cd atoms linked by two O atoms. All bond lengths and angles show normal values.

Related literature

For related literature, see: Elzbieta et al. (1964 [triangle]); Wang et al. (2003 [triangle]); Wu et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00m36-scheme1.jpg

Experimental

Crystal data

  • [Cd2(C20H10Br4N2O2)2(C3H7NO)2]
  • M r = 1630.87
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00m36-efi1.jpg
  • a = 9.6831 (8) Å
  • b = 12.0433 (10) Å
  • c = 12.4877 (10) Å
  • α = 95.942 (1)°
  • β = 108.822 (1)°
  • γ = 90.313 (1)°
  • V = 1369.82 (19) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 6.66 mm−1
  • T = 296 (2) K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 11120 measured reflections
  • 4716 independent reflections
  • 2815 reflections with I > 2σ(I)
  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.210
  • S = 1.04
  • 4716 reflections
  • 309 parameters
  • H-atom parameters constrained
  • Δρmax = 1.63 e Å−3
  • Δρmin = −2.23 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Bruker, 2001 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807059612/br2060sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807059612/br2060Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Education Government of China (grant No. 20772042).

supplementary crystallographic information

Comment

The crystal structure and some properties of 4,4',6,6'-tetrabromo- 2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenolato Ni(II) and Zn(II) complex were previously reported by Wang et al. (2003) and Wu et al. (2005), respectively. We report here the synthesis and crystal structure of a novel binuclear complex {bis[N,N'-1,2-phenylenediaminebis(3,5-dibromosalicylideneiminato)]- bisdimethylformamide-diCadmium(II)}. In the title compound,every molecule forms a centro-symmetric dimer and each Cd atom is six-coordinated by one oxygen atom of dimethylformamide, two O and two amino N atom of the ligand 4,4',6,6'-tetrabromo-2,2'-[1,2-phenylenebis-(nitrilomethylidyne)]diphenol and the µ-O atom from another ligand,forming a distorted octahedron (Fig. 1).

Experimental

The title complex was synthesized in two stages. In the first stage, 3,5-dibromosalicylaldehyde was prepared according to Elzbieta et al. (1964). (1964). To ethanol (100 ml) containing 1,2-phenylenediamine (6 g), two mole equivalents of 3,5-dibromosalicylaldehyde in ethanol (50 ml) were slowly added with continuous stirring; the Schiff base molecule, viz. 4,4',6,6'-tetrabromo-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenol, precipitated immediately. In the second stage, the ligand (0.3 mmol), Cd(OAc)2 (0.6 mmol), DMF (30 ml) were refluxed for 2 h. The hot solution was filtered and allowed to stand at room temperature undisturbed for about one month, resulting in yellow crystals.

Refinement

After their location in the difference map, all H-atoms were fixed geometrically at ideal positions and allowed to ride on the parent C or N atoms with Caromatic—H = 0.93 Å, Cmethine—H = 0.96 Å and N—H = 0.83 (3) Å and Uiso(H) = 1.2Ueq (C of aromatic and N) or Uiso(H) = 1.5Ueq(C of methine). Because the crystal approximated a sphere and the maximum transmission factor was 0.3943 an absorption correction was not considered necessary.

Figures

Fig. 1.
Molecular structure of (I) showing 30% probability displacement ellipsoids.

Crystal data

[Cd2(C20H10Br4N2O2)2(C3H7NO)2]Z = 1
Mr = 1630.87F000 = 776
Triclinic, P1Dx = 1.977 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.6831 (8) ÅCell parameters from 3027 reflections
b = 12.0433 (10) Åθ = 2.3–26.4º
c = 12.4877 (10) ŵ = 6.66 mm1
α = 95.942 (1)ºT = 296 (2) K
β = 108.822 (1)ºBlock, yellow
γ = 90.313 (1)º0.20 × 0.20 × 0.20 mm
V = 1369.82 (19) Å3

Data collection

Bruker SMART CCD area-detector diffractometer2815 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Monochromator: graphiteθmax = 25.0º
T = 296(2) Kθmin = 2.2º
[var phi] and ω scansh = −11→11
Absorption correction: nonek = −14→14
11120 measured reflectionsl = −14→14
4716 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.210  w = 1/[σ2(Fo2) + (0.1219P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4716 reflectionsΔρmax = 1.63 e Å3
309 parametersΔρmin = −2.23 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.11948 (8)0.12544 (6)0.51678 (6)0.0395 (3)
Br10.4487 (2)−0.23438 (14)1.02145 (13)0.0916 (6)
Br20.23171 (17)−0.28244 (10)0.53098 (11)0.0675 (4)
Br30.44885 (19)0.53322 (12)0.20894 (13)0.0840 (5)
Br40.07472 (16)0.13462 (11)0.09195 (10)0.0688 (5)
C10.1356 (12)0.3654 (9)0.6670 (8)0.043 (3)
C20.1149 (13)0.4809 (10)0.6945 (10)0.055 (3)
H20.11840.53150.64380.066*
C30.0895 (15)0.5198 (11)0.7953 (11)0.067 (4)
H30.08130.59580.81320.080*
C40.0764 (17)0.4440 (12)0.8695 (11)0.078 (4)
H40.05410.46850.93490.093*
C50.0982 (14)0.3268 (11)0.8430 (10)0.060 (3)
H50.09480.27660.89390.072*
C60.1244 (11)0.2880 (8)0.7418 (8)0.038 (2)
C70.1996 (12)0.1034 (10)0.7944 (8)0.048 (3)
H70.21900.13570.86900.057*
C80.2330 (12)−0.0143 (9)0.7800 (8)0.046 (3)
C90.1989 (11)−0.0823 (9)0.6713 (9)0.043 (3)
C100.2592 (12)−0.1937 (9)0.6746 (10)0.047 (3)
C110.3300 (13)−0.2379 (10)0.7774 (10)0.056 (3)
H110.3616−0.31060.77730.068*
C120.3519 (14)−0.1694 (11)0.8801 (11)0.061 (3)
C130.3081 (12)−0.0600 (10)0.8842 (10)0.053 (3)
H130.3272−0.01650.95380.063*
C140.2264 (12)0.3819 (9)0.5122 (9)0.047 (3)
H140.26680.45050.55150.057*
C150.2428 (12)0.3542 (8)0.3983 (9)0.043 (3)
C160.1701 (11)0.2569 (8)0.3189 (8)0.040 (2)
C170.1859 (14)0.2533 (10)0.2058 (9)0.052 (3)
C180.2647 (13)0.3316 (10)0.1731 (9)0.054 (3)
H180.27040.32480.09980.065*
C190.3385 (13)0.4247 (9)0.2558 (10)0.051 (3)
C200.3231 (13)0.4366 (9)0.3635 (10)0.055 (3)
H200.36570.49910.41410.066*
C210.4950 (16)0.1462 (13)0.6135 (13)0.076 (4)
H210.50670.22110.60460.091*
C220.7544 (17)0.1575 (18)0.7356 (15)0.132 (8)
H22A0.78030.16030.81690.198*
H22B0.75120.23210.71460.198*
H22C0.82590.11730.71070.198*
C230.591 (2)−0.0177 (14)0.7041 (16)0.111 (6)
H23A0.6012−0.01880.78300.167*
H23B0.6651−0.06170.68650.167*
H23C0.4965−0.04800.65770.167*
N10.1447 (10)0.1698 (8)0.7134 (7)0.047 (2)
N20.1608 (10)0.3198 (7)0.5632 (7)0.045 (2)
N30.6088 (12)0.0998 (10)0.6810 (9)0.069 (3)
O10.1178 (8)−0.0490 (5)0.5721 (6)0.0445 (18)
O20.0985 (8)0.1756 (6)0.3426 (6)0.0477 (19)
O30.3735 (9)0.0995 (9)0.5606 (9)0.087 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.0502 (5)0.0319 (4)0.0337 (5)−0.0075 (3)0.0083 (4)0.0092 (3)
Br10.1109 (13)0.0818 (11)0.0657 (10)0.0087 (9)−0.0052 (9)0.0452 (9)
Br20.0899 (10)0.0448 (7)0.0618 (8)0.0056 (7)0.0157 (7)0.0085 (6)
Br30.1124 (12)0.0685 (9)0.0833 (10)−0.0282 (9)0.0447 (10)0.0229 (8)
Br40.0918 (11)0.0691 (9)0.0404 (7)−0.0234 (7)0.0162 (7)0.0018 (6)
C10.055 (7)0.040 (6)0.031 (5)0.007 (5)0.009 (5)0.003 (5)
C20.064 (8)0.045 (7)0.057 (8)0.004 (6)0.021 (6)0.007 (6)
C30.086 (10)0.058 (8)0.062 (8)0.010 (7)0.032 (8)0.005 (7)
C40.101 (11)0.087 (11)0.054 (8)0.028 (9)0.039 (8)0.000 (8)
C50.068 (8)0.057 (8)0.054 (8)0.006 (6)0.018 (7)0.009 (6)
C60.040 (6)0.039 (6)0.034 (6)0.008 (5)0.007 (5)0.008 (5)
C70.053 (7)0.063 (8)0.025 (5)0.015 (6)0.007 (5)0.016 (5)
C80.060 (7)0.041 (6)0.030 (6)−0.017 (5)0.002 (5)0.007 (5)
C90.033 (6)0.050 (7)0.044 (6)−0.007 (5)0.003 (5)0.017 (5)
C100.048 (7)0.036 (6)0.055 (7)−0.007 (5)0.014 (6)0.008 (5)
C110.062 (8)0.040 (6)0.066 (8)−0.002 (6)0.013 (7)0.029 (6)
C120.060 (8)0.062 (8)0.054 (8)0.000 (6)−0.002 (6)0.044 (7)
C130.052 (7)0.051 (7)0.049 (7)−0.008 (6)0.002 (6)0.023 (6)
C140.059 (7)0.029 (5)0.049 (7)0.004 (5)0.009 (6)0.010 (5)
C150.049 (6)0.034 (6)0.045 (6)−0.001 (5)0.010 (5)0.017 (5)
C160.048 (6)0.035 (6)0.032 (5)0.002 (5)0.004 (5)0.011 (5)
C170.071 (8)0.053 (7)0.037 (6)0.009 (6)0.017 (6)0.023 (5)
C180.062 (8)0.062 (8)0.037 (6)−0.011 (6)0.012 (6)0.012 (6)
C190.052 (7)0.048 (7)0.059 (8)0.005 (5)0.020 (6)0.025 (6)
C200.073 (8)0.031 (6)0.056 (7)−0.012 (6)0.012 (7)0.012 (5)
C210.066 (10)0.071 (10)0.090 (11)0.003 (8)0.020 (9)0.022 (8)
C220.060 (11)0.20 (2)0.109 (15)−0.039 (13)−0.017 (10)0.049 (15)
C230.108 (14)0.094 (13)0.135 (16)0.037 (11)0.034 (12)0.045 (12)
N10.056 (6)0.054 (6)0.031 (5)−0.006 (5)0.013 (4)0.002 (4)
N20.063 (6)0.031 (5)0.035 (5)−0.015 (4)0.007 (4)0.006 (4)
N30.051 (7)0.083 (8)0.072 (8)−0.002 (6)0.016 (6)0.015 (7)
O10.052 (5)0.032 (4)0.038 (4)0.000 (3)−0.006 (3)0.020 (3)
O20.066 (5)0.046 (4)0.031 (4)−0.015 (4)0.016 (4)0.006 (3)
O30.040 (5)0.098 (8)0.121 (9)−0.001 (5)0.021 (6)0.013 (6)

Geometric parameters (Å, °)

Cd1—O22.265 (6)C10—C111.406 (15)
Cd1—O12.279 (6)C11—C121.405 (17)
Cd1—O1i2.341 (7)C11—H110.9300
Cd1—N22.352 (8)C12—C131.387 (17)
Cd1—O32.371 (9)C13—H130.9300
Cd1—N12.391 (8)C14—N21.313 (12)
Br1—C121.958 (11)C14—C151.486 (15)
Br2—C101.929 (11)C14—H140.9300
Br3—C191.933 (10)C15—C201.441 (13)
Br4—C171.949 (12)C15—C161.468 (14)
C1—C61.414 (13)C16—O21.307 (11)
C1—C21.429 (15)C16—C171.465 (14)
C1—N21.449 (13)C17—C181.383 (15)
C2—C31.394 (16)C18—C191.453 (16)
C2—H20.9300C18—H180.9300
C3—C41.399 (18)C19—C201.394 (15)
C3—H30.9300C20—H200.9300
C4—C51.448 (18)C21—O31.245 (16)
C4—H40.9300C21—N31.320 (16)
C5—C61.401 (15)C21—H210.9300
C5—H50.9300C22—N31.486 (18)
C6—N11.460 (13)C22—H22A0.9600
C7—N11.331 (13)C22—H22B0.9600
C7—C81.463 (15)C22—H22C0.9600
C7—H70.9300C23—N31.492 (19)
C8—C131.438 (14)C23—H23A0.9600
C8—C91.448 (15)C23—H23B0.9600
C9—O11.339 (12)C23—H23C0.9600
C9—C101.466 (15)O1—Cd1i2.341 (7)
O2—Cd1—O1129.1 (3)C12—C13—H13120.3
O2—Cd1—O1i84.5 (2)C8—C13—H13120.3
O1—Cd1—O1i73.6 (3)N2—C14—C15126.8 (9)
O2—Cd1—N280.5 (3)N2—C14—H14116.6
O1—Cd1—N2150.0 (3)C15—C14—H14116.6
O1i—Cd1—N2120.4 (3)C20—C15—C16120.5 (10)
O2—Cd1—O392.4 (3)C20—C15—C14115.5 (9)
O1—Cd1—O383.4 (3)C16—C15—C14123.7 (9)
O1i—Cd1—O3147.1 (3)O2—C16—C17119.8 (9)
N2—Cd1—O391.1 (3)O2—C16—C15125.5 (9)
O2—Cd1—N1151.8 (3)C17—C16—C15114.6 (9)
O1—Cd1—N179.2 (3)C18—C17—C16124.8 (11)
O1i—Cd1—N1106.3 (3)C18—C17—Br4118.6 (8)
N2—Cd1—N171.6 (3)C16—C17—Br4116.4 (8)
O3—Cd1—N191.7 (3)C17—C18—C19118.5 (10)
C6—C1—C2119.1 (10)C17—C18—H18120.7
C6—C1—N2116.5 (9)C19—C18—H18120.7
C2—C1—N2124.3 (9)C20—C19—C18120.0 (9)
C3—C2—C1121.7 (11)C20—C19—Br3121.9 (9)
C3—C2—H2119.2C18—C19—Br3118.1 (8)
C1—C2—H2119.2C19—C20—C15121.5 (10)
C2—C3—C4119.8 (12)C19—C20—H20119.3
C2—C3—H3120.1C15—C20—H20119.3
C4—C3—H3120.1O3—C21—N3126.3 (14)
C3—C4—C5119.0 (11)O3—C21—H21116.8
C3—C4—H4120.5N3—C21—H21116.8
C5—C4—H4120.5N3—C22—H22A109.5
C6—C5—C4121.1 (11)N3—C22—H22B109.5
C6—C5—H5119.5H22A—C22—H22B109.5
C4—C5—H5119.5N3—C22—H22C109.5
C5—C6—C1119.2 (10)H22A—C22—H22C109.5
C5—C6—N1121.6 (9)H22B—C22—H22C109.5
C1—C6—N1119.1 (9)N3—C23—H23A109.5
N1—C7—C8127.6 (10)N3—C23—H23B109.5
N1—C7—H7116.2H23A—C23—H23B109.5
C8—C7—H7116.2N3—C23—H23C109.5
C13—C8—C9120.7 (10)H23A—C23—H23C109.5
C13—C8—C7114.5 (10)H23B—C23—H23C109.5
C9—C8—C7124.7 (9)C7—N1—C6121.1 (9)
O1—C9—C8124.0 (10)C7—N1—Cd1125.2 (7)
O1—C9—C10120.1 (10)C6—N1—Cd1112.4 (6)
C8—C9—C10115.8 (9)C14—N2—C1119.9 (9)
C11—C10—C9122.3 (11)C14—N2—Cd1123.4 (7)
C11—C10—Br2120.2 (9)C1—N2—Cd1115.6 (6)
C9—C10—Br2117.5 (8)C21—N3—C22123.9 (13)
C12—C11—C10118.4 (11)C21—N3—C23118.5 (12)
C12—C11—H11120.8C22—N3—C23117.6 (14)
C10—C11—H11120.8C9—O1—Cd1126.7 (6)
C13—C12—C11122.8 (10)C9—O1—Cd1i119.4 (5)
C13—C12—Br1120.0 (10)Cd1—O1—Cd1i106.4 (3)
C11—C12—Br1117.2 (9)C16—O2—Cd1127.4 (6)
C12—C13—C8119.4 (11)C21—O3—Cd1142.1 (10)
C6—C1—C2—C32.5 (18)O1—Cd1—N1—C724.8 (9)
N2—C1—C2—C3179.3 (11)O1i—Cd1—N1—C793.9 (9)
C1—C2—C3—C4−3(2)N2—Cd1—N1—C7−148.7 (9)
C2—C3—C4—C54(2)O3—Cd1—N1—C7−58.2 (9)
C3—C4—C5—C6−3(2)O2—Cd1—N1—C610.3 (11)
C4—C5—C6—C12.6 (18)O1—Cd1—N1—C6−168.3 (7)
C4—C5—C6—N1−179.2 (11)O1i—Cd1—N1—C6−99.1 (7)
C2—C1—C6—C5−2.2 (16)N2—Cd1—N1—C618.2 (6)
N2—C1—C6—C5−179.2 (10)O3—Cd1—N1—C6108.8 (7)
C2—C1—C6—N1179.6 (10)C15—C14—N2—C1−171.1 (10)
N2—C1—C6—N12.6 (14)C15—C14—N2—Cd121.1 (15)
N1—C7—C8—C13172.7 (10)C6—C1—N2—C14−153.9 (10)
N1—C7—C8—C9−5.8 (18)C2—C1—N2—C1429.3 (16)
C13—C8—C9—O1173.6 (9)C6—C1—N2—Cd114.8 (12)
C7—C8—C9—O1−7.9 (16)C2—C1—N2—Cd1−162.0 (9)
C13—C8—C9—C10−6.4 (14)O2—Cd1—N2—C14−33.2 (8)
C7—C8—C9—C10172.0 (10)O1—Cd1—N2—C14137.8 (8)
O1—C9—C10—C11−172.2 (9)O1i—Cd1—N2—C14−111.0 (8)
C8—C9—C10—C117.8 (15)O3—Cd1—N2—C1459.1 (9)
O1—C9—C10—Br25.4 (12)N1—Cd1—N2—C14150.6 (9)
C8—C9—C10—Br2−174.6 (7)O2—Cd1—N2—C1158.5 (8)
C9—C10—C11—C12−4.4 (16)O1—Cd1—N2—C1−30.5 (11)
Br2—C10—C11—C12178.1 (9)O1i—Cd1—N2—C180.7 (8)
C10—C11—C12—C13−0.7 (18)O3—Cd1—N2—C1−109.2 (8)
C10—C11—C12—Br1179.3 (8)N1—Cd1—N2—C1−17.7 (7)
C11—C12—C13—C82.0 (18)O3—C21—N3—C22175.5 (15)
Br1—C12—C13—C8−178.0 (8)O3—C21—N3—C23−4(2)
C9—C8—C13—C121.9 (16)C8—C9—O1—Cd138.3 (13)
C7—C8—C13—C12−176.7 (10)C10—C9—O1—Cd1−141.6 (7)
N2—C14—C15—C20−178.6 (11)C8—C9—O1—Cd1i−107.3 (9)
N2—C14—C15—C168.2 (18)C10—C9—O1—Cd1i72.7 (11)
C20—C15—C16—O2177.7 (11)O2—Cd1—O1—C9142.4 (8)
C14—C15—C16—O2−9.3 (17)O1i—Cd1—O1—C9−149.2 (10)
C20—C15—C16—C17−0.6 (15)N2—Cd1—O1—C9−26.1 (11)
C14—C15—C16—C17172.4 (10)O3—Cd1—O1—C954.6 (8)
O2—C16—C17—C18−176.9 (11)N1—Cd1—O1—C9−38.4 (8)
C15—C16—C17—C181.6 (17)O2—Cd1—O1—Cd1i−68.4 (4)
O2—C16—C17—Br47.9 (14)O1i—Cd1—O1—Cd1i0.0
C15—C16—C17—Br4−173.7 (7)N2—Cd1—O1—Cd1i123.1 (5)
C16—C17—C18—C190.2 (19)O3—Cd1—O1—Cd1i−156.2 (4)
Br4—C17—C18—C19175.4 (9)N1—Cd1—O1—Cd1i110.7 (3)
C17—C18—C19—C20−3.1 (18)C17—C16—O2—Cd1157.1 (8)
C17—C18—C19—Br3179.8 (9)C15—C16—O2—Cd1−21.2 (15)
C18—C19—C20—C154.1 (18)O1—Cd1—O2—C16−140.1 (8)
Br3—C19—C20—C15−178.9 (9)O1i—Cd1—O2—C16156.2 (9)
C16—C15—C20—C19−2.2 (17)N2—Cd1—O2—C1634.1 (9)
C14—C15—C20—C19−175.7 (11)O3—Cd1—O2—C16−56.6 (9)
C8—C7—N1—C6−176.7 (10)N1—Cd1—O2—C1641.7 (12)
C8—C7—N1—Cd1−10.9 (16)N3—C21—O3—Cd1134.6 (14)
C5—C6—N1—C7−28.6 (15)O2—Cd1—O3—C2199.7 (17)
C1—C6—N1—C7149.5 (10)O1—Cd1—O3—C21−131.3 (17)
C5—C6—N1—Cd1163.8 (9)O1i—Cd1—O3—C21−176.7 (14)
C1—C6—N1—Cd1−18.1 (11)N2—Cd1—O3—C2119.2 (17)
O2—Cd1—N1—C7−156.6 (8)N1—Cd1—O3—C21−52.4 (17)

Symmetry codes: (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2060).

References

  • Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Elzbieta, C., Zygmunt, E. & Romuald, K. (1964). Diss. Pharm.15, 369–378.
  • Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wang, J., Bei, F. L. & Ma, W. X. (2003). Chin. J. Inorg. Chem.19, 609–612.
  • Wu, Y., Hu, Z., Li, M. & Fu, X. (2005). Acta Cryst. E61, m1352–m1353.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography