PMCCPMCCPMCC

Conseils de recherche
Les critères de recherche 

Avancée

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m31.
Published online 2007 December 6. doi:  10.1107/S1600536807062332
PMCID: PMC2914920

Poly[[aqua­(1-naphthyl­acetato)cadmium(II)]-μ3-pyridin-3-olato]

Abstract

In the title complex, [Cd(C5H4NO)(C12H9O2)(H2O)]n, each CdII atom is coordinated by two carboxylate O atoms from one 1-naphthyl­acetate ligand, two hydroxyl O atoms from two pyridin-3-olate ligands, one N atom from another pyridin-3-olate ligand and one water mol­ecule, and displays a distorted octa­hedral coordination geometry. The compound forms infinite chains of pyridin-3-olate ligands bridging 1-naphthyl­acetate–CdII units parallel to the b axis, with a Cd(...)Cd separation of 3.578 (2) Å. The chains are further self-assembled into a supra­molecular network through inter­molecular O—H(...)O hydrogen-bonding inter­actions.

Related literature

Other structures of naphthyl­acetic acid have been reported by Chen et al. (2004 [triangle]); Duan et al. (2007 [triangle]); Liu et al. (2006 [triangle]); and Tang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00m31-scheme1.jpg

Experimental

Crystal data

  • [Cd(C5H4NO)(C12H9O2)(H2O)]
  • M r = 409.70
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00m31-efi1.jpg
  • a = 14.978 (2) Å
  • b = 6.7324 (1) Å
  • c = 15.729 (2) Å
  • β = 95.928 (1)°
  • V = 1577.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.40 mm−1
  • T = 296 (2) K
  • 0.26 × 0.23 × 0.20 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.702, T max = 0.757
  • 16642 measured reflections
  • 3617 independent reflections
  • 3172 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.066
  • S = 1.05
  • 3617 reflections
  • 214 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.25 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2004 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062332/zl2087sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062332/zl2087Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Dong Hua University for supporting this work.

supplementary crystallographic information

Comment

In structural investigations of complexes containing the 1-naphthylacetic acid ligand, it has been found that this molecule can act as a multidentate ligand with a range of versatile binding and coordination modes (Chen et al., 2004; Duan et al., 2007; Liu et al., 2006; Tang et al., 2006). In this paper, we report the crystal structure of the a new Cd complex obtained by the reaction of 1-naphthylacetic acid, 3-hydroxypyridine and cadmium chloride in alkaline aqueous solution.

As illustrated in Figure 1, each CdII atom, has a distorted octahedral geometry with the six coordinating atoms being two carboxyl O atoms from one 1-naphthylacetate ligands, two hydroxyl O atoms from two pyridin-3-olate ligands, one N atom from another pyridin-3-olate ligand and one water molecule. The pyridin-3-olate ligands connect 1-naphthylacetate-CdII units to form an infinite chain parallel to the b axis with a Cd···Cd separation of 3.578 (2) Å. These chains are further assembled by intermolecular O—H···O hydrogen bonding, with the coordinating water molecules as donors and the carboxyl O atoms as acceptors, thus forming a supramolecular network (Fig. 2).

Experimental

A mixture of cadmium chloride (1 mmol), 3-hydroxypyridine (1 mmol), 1-naphthylacetic acid (1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C). Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.82 Å and H···H = 1.29 Å, each within a standard deviation of 0.01 Å with Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.
The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids. Unlabeled atoms are related to the labelled atoms by the symmetry operator (1 - x, 2 - y, 1 - z).
Fig. 2.
A packing view of the title compound. The intermolecluar hydrogen bonds are shown as dashed lines.

Crystal data

[Cd(C5H4NO)(C12H9O2)(H2O)]F000 = 816
Mr = 409.70Dx = 1.725 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3600 reflections
a = 14.978 (2) Åθ = 1.4–28.0º
b = 6.7324 (1) ŵ = 1.40 mm1
c = 15.729 (2) ÅT = 296 (2) K
β = 95.928 (1)ºBlock, colorless
V = 1577.6 (3) Å30.26 × 0.23 × 0.20 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer3617 independent reflections
Radiation source: fine-focus sealed tube3172 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
T = 296(2) Kθmax = 27.5º
[var phi] and ω scanθmin = 2.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −19→19
Tmin = 0.702, Tmax = 0.757k = −8→8
16642 measured reflectionsl = −20→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066  w = 1/[σ2(Fo2) + (0.0338P)2 + 0.9831P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3617 reflectionsΔρmax = 1.25 e Å3
214 parametersΔρmin = −0.38 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.34909 (17)0.9822 (4)0.28171 (15)0.0352 (5)
C20.26353 (19)0.9927 (5)0.22167 (19)0.0473 (7)
H2A0.23391.11800.23050.057*
H2B0.27890.99090.16320.057*
C30.19905 (18)0.8260 (4)0.23315 (17)0.0443 (6)
C40.1889 (2)0.6728 (6)0.1757 (2)0.0636 (9)
H40.21940.67620.12720.076*
C50.1329 (3)0.5102 (7)0.1888 (3)0.0839 (13)
H50.12630.40910.14840.101*
C60.0885 (3)0.4986 (7)0.2594 (3)0.0826 (13)
H60.05260.38900.26770.099*
C70.0967 (2)0.6536 (6)0.3206 (2)0.0606 (9)
C80.0526 (2)0.6468 (8)0.3968 (3)0.0859 (15)
H80.01600.53940.40690.103*
C90.0640 (3)0.7988 (9)0.4553 (3)0.0905 (15)
H90.03700.79100.50580.109*
C100.1148 (3)0.9617 (8)0.4398 (3)0.0819 (13)
H100.11971.06530.47910.098*
C110.1578 (2)0.9751 (6)0.3689 (2)0.0574 (8)
H110.19231.08680.36020.069*
C120.15083 (17)0.8184 (5)0.30670 (18)0.0453 (7)
C130.39701 (15)0.6800 (3)0.52212 (14)0.0283 (5)
C140.31557 (17)0.6297 (4)0.47649 (16)0.0375 (6)
H140.28260.72520.44410.045*
C150.28404 (19)0.4379 (4)0.47949 (19)0.0443 (7)
H150.22940.40390.44960.053*
C160.33343 (17)0.2974 (4)0.52667 (17)0.0390 (6)
H160.31230.16750.52720.047*
C170.44164 (16)0.5292 (3)0.57099 (15)0.0294 (5)
H170.49480.56050.60420.035*
Cd10.501556 (11)0.93285 (2)0.390115 (10)0.03064 (7)
H1W0.608 (2)1.071 (5)0.266 (2)0.046*
H2W0.606 (2)0.888 (5)0.259 (2)0.046*
N10.41152 (13)0.3429 (3)0.57215 (13)0.0322 (4)
O10.38196 (12)0.8145 (3)0.30183 (11)0.0405 (4)
O20.38678 (13)1.1377 (3)0.31050 (12)0.0461 (5)
O30.43274 (12)0.8600 (2)0.51500 (10)0.0336 (4)
O1W0.59985 (17)0.9759 (3)0.28914 (15)0.0538 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0388 (13)0.0376 (14)0.0295 (12)−0.0037 (11)0.0055 (10)0.0013 (10)
C20.0433 (16)0.0557 (17)0.0421 (15)−0.0011 (14)0.0006 (12)0.0119 (13)
C30.0384 (14)0.0509 (17)0.0413 (14)0.0002 (12)−0.0062 (11)0.0040 (13)
C40.059 (2)0.074 (2)0.0542 (19)−0.0033 (18)−0.0098 (15)−0.0115 (18)
C50.084 (3)0.067 (3)0.091 (3)−0.006 (2)−0.034 (2)−0.020 (2)
C60.058 (2)0.069 (3)0.113 (4)−0.020 (2)−0.028 (2)0.024 (3)
C70.0343 (15)0.066 (2)0.078 (2)0.0005 (15)−0.0060 (14)0.0297 (19)
C80.046 (2)0.098 (3)0.114 (4)0.005 (2)0.010 (2)0.061 (3)
C90.070 (3)0.120 (4)0.086 (3)0.035 (3)0.029 (2)0.033 (3)
C100.076 (3)0.107 (4)0.066 (2)0.041 (3)0.023 (2)0.007 (2)
C110.0521 (18)0.066 (2)0.0543 (18)0.0172 (16)0.0045 (14)0.0037 (16)
C120.0305 (13)0.0558 (18)0.0483 (15)0.0071 (12)−0.0029 (11)0.0138 (14)
C130.0357 (12)0.0211 (11)0.0292 (11)0.0019 (9)0.0077 (9)−0.0005 (9)
C140.0401 (14)0.0289 (12)0.0424 (14)0.0044 (11)−0.0017 (11)0.0044 (11)
C150.0377 (14)0.0361 (15)0.0565 (17)−0.0050 (11)−0.0071 (12)0.0001 (12)
C160.0413 (14)0.0245 (12)0.0507 (15)−0.0028 (11)0.0024 (11)−0.0003 (11)
C170.0320 (12)0.0282 (12)0.0279 (11)0.0010 (9)0.0024 (9)−0.0002 (9)
Cd10.03952 (11)0.02275 (10)0.02918 (10)0.00089 (7)0.00128 (7)0.00151 (7)
N10.0343 (10)0.0251 (10)0.0377 (11)0.0015 (8)0.0070 (8)0.0028 (8)
O10.0458 (10)0.0308 (10)0.0429 (10)−0.0008 (8)−0.0043 (8)−0.0026 (8)
O20.0555 (12)0.0311 (10)0.0503 (11)−0.0001 (9)−0.0017 (9)0.0001 (9)
O30.0463 (10)0.0218 (8)0.0331 (8)−0.0039 (7)0.0058 (7)0.0011 (7)
O1W0.0822 (16)0.0294 (11)0.0547 (14)−0.0012 (11)0.0306 (12)0.0036 (9)

Geometric parameters (Å, °)

C1—O21.252 (3)C11—H110.9300
C1—O11.259 (3)C13—O31.334 (3)
C1—C21.513 (4)C13—C141.392 (3)
C2—C31.504 (4)C13—C171.401 (3)
C2—H2A0.9700C14—C151.377 (4)
C2—H2B0.9700C14—H140.9300
C3—C41.369 (4)C15—C161.371 (4)
C3—C121.427 (4)C15—H150.9300
C4—C51.406 (6)C16—N11.342 (3)
C4—H40.9300C16—H160.9300
C5—C61.355 (6)C17—N11.334 (3)
C5—H50.9300C17—H170.9300
C6—C71.416 (6)Cd1—O3i2.1992 (17)
C6—H60.9300Cd1—O12.2931 (17)
C7—C121.405 (4)Cd1—O1W2.293 (2)
C7—C81.428 (6)Cd1—N1ii2.310 (2)
C8—C91.375 (7)Cd1—O32.3620 (16)
C8—H80.9300Cd1—O22.4455 (19)
C9—C101.371 (7)N1—Cd1ii2.310 (2)
C9—H90.9300O3—Cd1i2.1992 (17)
C10—C111.347 (5)O1W—H1W0.75 (3)
C10—H100.9300O1W—H2W0.77 (3)
C11—C121.435 (5)
O2—C1—O1120.6 (2)O3—C13—C17122.1 (2)
O2—C1—C2120.5 (3)C14—C13—C17116.7 (2)
O1—C1—C2118.9 (2)C15—C14—C13119.7 (2)
C3—C2—C1113.8 (2)C15—C14—H14120.1
C3—C2—H2A108.8C13—C14—H14120.1
C1—C2—H2A108.8C16—C15—C14119.9 (2)
C3—C2—H2B108.8C16—C15—H15120.1
C1—C2—H2B108.8C14—C15—H15120.1
H2A—C2—H2B107.7N1—C16—C15121.5 (2)
C4—C3—C12118.5 (3)N1—C16—H16119.2
C4—C3—C2120.8 (3)C15—C16—H16119.2
C12—C3—C2120.6 (3)N1—C17—C13123.1 (2)
C3—C4—C5121.2 (4)N1—C17—H17118.4
C3—C4—H4119.4C13—C17—H17118.4
C5—C4—H4119.4O3i—Cd1—O1153.91 (7)
C6—C5—C4121.0 (4)O3i—Cd1—O1W96.64 (8)
C6—C5—H5119.5O1—Cd1—O1W98.15 (8)
C4—C5—H5119.5O3i—Cd1—N1ii97.72 (7)
C5—C6—C7119.9 (4)O1—Cd1—N1ii105.11 (7)
C5—C6—H6120.0O1W—Cd1—N1ii83.93 (8)
C7—C6—H6120.0O3i—Cd1—O376.72 (7)
C12—C7—C6119.1 (3)O1—Cd1—O392.91 (6)
C12—C7—C8118.8 (4)O1W—Cd1—O3165.66 (8)
C6—C7—C8122.1 (4)N1ii—Cd1—O384.39 (6)
C9—C8—C7120.1 (4)O3i—Cd1—O2103.39 (7)
C9—C8—H8120.0O1—Cd1—O254.69 (6)
C7—C8—H8120.0O1W—Cd1—O292.40 (8)
C10—C9—C8120.7 (4)N1ii—Cd1—O2158.86 (7)
C10—C9—H9119.7O3—Cd1—O2101.47 (6)
C8—C9—H9119.7C17—N1—C16119.0 (2)
C11—C10—C9121.5 (5)C17—N1—Cd1ii125.24 (16)
C11—C10—H10119.3C16—N1—Cd1ii112.99 (16)
C9—C10—H10119.3C1—O1—Cd195.81 (15)
C10—C11—C12120.5 (4)C1—O2—Cd188.89 (16)
C10—C11—H11119.8C13—O3—Cd1i132.39 (14)
C12—C11—H11119.8C13—O3—Cd1118.14 (14)
C7—C12—C3120.2 (3)Cd1i—O3—Cd1103.28 (7)
C7—C12—C11118.5 (3)Cd1—O1W—H1W126 (3)
C3—C12—C11121.3 (3)Cd1—O1W—H2W117 (2)
O3—C13—C14121.0 (2)H1W—O1W—H2W109 (3)

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1iii0.75 (3)1.97 (3)2.720 (3)174 (4)
O1W—H2W···O2iv0.77 (3)2.02 (3)2.783 (3)173 (3)

Symmetry codes: (iii) −x+1, y+1/2, −z+1/2; (iv) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2087).

References

  • Bruker (2004). APEX2 (Version 7.23A), SAINT (Version 7.23A) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, L.-F., Zhang, J., Song, L.-J., Wang, W.-G. & Ju, Z.-F. (2004). Acta Cryst. E60, m1032–m1034.
  • Duan, J.-G., Liu, J.-W. & Wu, S. (2007). Acta Cryst. E63, m692–m694.
  • Liu, J.-W., Wang, W.-Y. & Gu, C.-S. (2006). Acta Cryst. E62, m3445–m3447.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Tang, D. X., Feng, L. X. & Zhang, X. Q. (2006). Chin. J. Inorg. Chem.22, 1891–1894.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography