PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m21.
Published online 2007 December 6. doi:  10.1107/S1600536807060825
PMCID: PMC2914913

Poly[[[(1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydro­quinoline-3-carboxyl­ato)manganese(II)]-μ3-4,4′-oxydibenzoato] monohydrate]

Abstract

In the title compound, {[Mn(C16H18N3O3)(C14H8O5)]·H2O}n, the unique MnII ion is coordinated by two O atoms from a chelating 1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydro­quinoline-3-carboxyl­ate ligand and three O atoms from three 4,4′-oxydibenzoate ligands, forming a distorted square-pyramidal coordination environment. In the crystal structure, centrosymmetric dinuclear manganese units are linked via 4,4′-oxydibenzoate ligands into one-dimensional chains; these chains are, in turn, connected via inter­molecular N—H(...)O and O—H(...)O hydrogen bonds to form a two-dimensional supra­molecular network. The O atom of the solvent water mol­ecule is disordered over two sites with equal occupancies; the attached H atoms are common to both sites.

Related literature

For general background, see: Xiao et al. (2005 [triangle]). For a related structure, see: An et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00m21-scheme1.jpg

Experimental

Crystal data

  • [Mn(C16H18N3O3)(C14H8O5)]·H2O
  • M r = 648.49
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00m21-efi1.jpg
  • a = 10.208 (5) Å
  • b = 11.915 (5) Å
  • c = 13.202 (5) Å
  • α = 100.751 (5)°
  • β = 112.010 (5)°
  • γ = 102.318 (5)°
  • V = 1390.1 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.55 mm−1
  • T = 298 (2) K
  • 0.23 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.885, T max = 0.908
  • 13533 measured reflections
  • 6236 independent reflections
  • 5434 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.129
  • S = 1.05
  • 6236 reflections
  • 407 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 1990 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807060825/lh2564sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807060825/lh2564Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Jilin Normal University for supporting this work.

supplementary crystallographic information

Comment

Norfloxacin [1-Ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-1-yl)quinoline-3-carboxylic acid, Hcf] is a member of a class of quinolones that is used to treat infections (Xiao et al. 2005; An et al. 2007). As a part of our ongoing investigations in this field, we report here the crystal structure of the title compound. In the crystal structure of the title compound, the Mn atoms are coordinated by three oxygen atoms of one Hcf ligand, one 4,4'-oxydibenzoate ligand and one oxygen atom from one symmetry related 4,4'-oxydibenzoate within a distorted square-pyramidal geometry (Figure 1). In the crystal structure, dinuclear manganese units are linked via the 4,4'-oxydibenzoate anions into a one-dimensional chain running along [-2, -3, 2]. Finally, one-dimensional chains are connected with N—H···O and O—H···O hydrogen bonds to form a two-dimensional supramolecular network.

Experimental

The title compound was prepared by a hydrothermal method. A mixture of MnCl2 (0.07 g 0.5 mmol), norfloxacin (0.16 g 0.5 mmol), 4,4'-oxy-bisbenzoic acid (0.13 g 0.5 mmol) and water (10 ml) was stirred for 20 min and then transferred to a 23 ml Teflon reactor. The reactor was kept at 433 K for 72 h under autogenous pressure. Single crystals of were obtained after cooling to room temperature.

Refinement

H atoms were placed in calculated positions with C—H = 0.93, 0.96 and 0.97 Å and N—H = 0.90 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C, N, O). H atoms of water molecule were located in difference maps but were included as riding with O - H = 0.85 Å and Uiso(H) = 1.5 Ueq(O). The O atom of the water molecule is disordered over two sites with the ratio of refined occupancies being 0.50 (2):0.50 (2). The H atoms of this water molecule are common to both sites.

Figures

Fig. 1.
Part of the crystal structure with labeling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: i = x - 1,y - 1,z; ii = -x + 2,-y + 1,-z + 1]. The disorder is not showm.

Crystal data

[Mn(C16H18N3O3)(C14H8O5)]·H2OZ = 2
Mr = 648.49F000 = 670
Triclinic, P1Dx = 1.549 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 10.208 (5) ÅCell parameters from 13533 reflections
b = 11.915 (5) Åθ = 3.2–27.5º
c = 13.202 (5) ŵ = 0.55 mm1
α = 100.751 (5)ºT = 298 (2) K
β = 112.010 (5)ºBlock, colorless
γ = 102.318 (5)º0.23 × 0.20 × 0.18 mm
V = 1390.1 (10) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer6236 independent reflections
Radiation source: fine-focus sealed tube5434 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.031
T = 298(2) Kθmax = 27.5º
ω scansθmin = 3.2º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −12→13
Tmin = 0.885, Tmax = 0.908k = −14→15
13533 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.129  w = 1/[σ2(Fo2) + (0.0863P)2 + 0.3678P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6236 reflectionsΔρmax = 0.55 e Å3
407 parametersΔρmin = −0.35 e Å3
6 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Mn10.87296 (3)0.44003 (2)0.32348 (2)0.02128 (10)
C11.1128 (2)0.82195 (16)0.49788 (16)0.0247 (4)
C21.1270 (2)0.90958 (17)0.59100 (16)0.0264 (4)
H2A1.09970.88650.64560.032*
C31.1812 (2)1.03007 (17)0.60306 (16)0.0273 (4)
H3A1.19031.08790.66540.033*
C41.2219 (2)1.06439 (16)0.52159 (17)0.0262 (4)
C51.2094 (2)0.97946 (18)0.42831 (18)0.0314 (4)
H5A1.23781.00290.37430.038*
C61.1536 (2)0.85872 (17)0.41711 (18)0.0297 (4)
H6A1.14320.80100.35410.036*
C71.0531 (2)0.69147 (17)0.48503 (18)0.0264 (4)
C81.4875 (2)1.36779 (17)0.38123 (17)0.0265 (4)
C91.3520 (2)1.37948 (19)0.37526 (19)0.0323 (4)
H9A1.31221.43160.33800.039*
C101.2758 (2)1.31470 (19)0.42401 (19)0.0315 (4)
H10A1.18601.32370.42050.038*
C111.3354 (2)1.23664 (16)0.47793 (17)0.0280 (4)
C121.4669 (2)1.21939 (18)0.48114 (18)0.0329 (4)
H12A1.50311.16350.51430.039*
C131.5432 (2)1.28651 (19)0.43436 (18)0.0303 (4)
H13A1.63311.27730.43840.036*
C141.5780 (2)1.44426 (18)0.33786 (18)0.0298 (4)
C150.72279 (18)0.18861 (15)0.16263 (14)0.0198 (3)
C160.84417 (19)0.18967 (15)0.13214 (15)0.0208 (3)
C170.8599 (2)0.08327 (16)0.08805 (16)0.0247 (4)
H17A0.93750.08660.06690.030*
C180.65597 (18)−0.03553 (15)0.10430 (14)0.0201 (3)
C190.62933 (18)0.06987 (15)0.14683 (14)0.0195 (3)
C200.51069 (19)0.06089 (16)0.17796 (15)0.0224 (3)
H20A0.49180.12990.20680.027*
C210.42376 (19)−0.04923 (17)0.16565 (16)0.0239 (4)
C220.44917 (19)−0.15747 (15)0.12569 (15)0.0216 (3)
C230.56632 (19)−0.14844 (15)0.09490 (15)0.0208 (3)
H23A0.5859−0.21780.06770.025*
C240.3535 (2)−0.28055 (17)0.22389 (17)0.0278 (4)
H24A0.3440−0.20840.26470.033*
H24B0.4467−0.29060.27130.033*
C250.2255 (2)−0.38815 (17)0.20169 (19)0.0303 (4)
H25A0.2272−0.39700.27370.036*
H25B0.1318−0.37650.15780.036*
C260.2411 (2)−0.48454 (17)0.02785 (17)0.0314 (4)
H26A0.1473−0.4761−0.02030.038*
H26B0.2525−0.5562−0.01210.038*
C270.3680 (2)−0.37514 (16)0.04987 (16)0.0271 (4)
H27A0.4625−0.38640.09250.032*
H27B0.3646−0.3653−0.02230.032*
C280.95504 (19)0.30350 (15)0.14442 (16)0.0230 (4)
C290.8106 (2)−0.13254 (17)0.02814 (19)0.0298 (4)
H29A0.8568−0.1147−0.02160.036*
H29B0.7203−0.1998−0.01670.036*
C300.9141 (3)−0.1668 (2)0.1229 (2)0.0460 (6)
H30A0.9362−0.23580.09150.069*
H30B0.8681−0.18550.17180.069*
H30C1.0044−0.10100.16650.069*
F10.30490 (14)−0.05557 (11)0.18978 (12)0.0368 (3)
N10.77241 (17)−0.02611 (13)0.07263 (14)0.0234 (3)
N20.35453 (17)−0.26761 (13)0.11516 (13)0.0232 (3)
N30.23945 (18)−0.49768 (14)0.13743 (14)0.0272 (3)
H3B0.1626−0.56170.12280.033*
H3C0.3240−0.51050.18020.033*
O11.01455 (17)0.61842 (12)0.38860 (14)0.0356 (3)
O21.04421 (16)0.66314 (13)0.56977 (14)0.0323 (3)
O31.71509 (15)1.46076 (13)0.38222 (13)0.0342 (3)
O41.51348 (18)1.48909 (17)0.26125 (17)0.0451 (4)
O51.26452 (19)1.18672 (13)0.53831 (14)0.0360 (3)
O60.69325 (14)0.28045 (11)0.19922 (12)0.0260 (3)
O70.96748 (15)0.40179 (12)0.20826 (12)0.0291 (3)
O81.03114 (17)0.29361 (12)0.08966 (14)0.0366 (4)
O1W0.7413 (5)0.5678 (6)0.2066 (4)0.0338 (16)0.50 (2)
H10.82240.61890.25750.051*
H20.66980.54110.22260.051*
O1W'0.7286 (5)0.6219 (15)0.2009 (4)0.064 (3)0.50 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.02024 (16)0.01816 (15)0.02471 (16)0.00072 (10)0.01335 (11)0.00295 (11)
C10.0233 (9)0.0223 (9)0.0277 (9)0.0064 (7)0.0100 (7)0.0088 (7)
C20.0276 (9)0.0303 (10)0.0235 (9)0.0084 (7)0.0120 (7)0.0111 (7)
C30.0333 (10)0.0251 (9)0.0217 (9)0.0085 (7)0.0113 (7)0.0047 (7)
C40.0290 (10)0.0202 (8)0.0281 (9)0.0054 (7)0.0120 (7)0.0074 (7)
C50.0406 (11)0.0261 (9)0.0300 (10)0.0049 (8)0.0209 (8)0.0080 (8)
C60.0356 (11)0.0235 (9)0.0302 (10)0.0053 (7)0.0184 (8)0.0039 (7)
C70.0199 (9)0.0237 (9)0.0373 (10)0.0071 (7)0.0136 (7)0.0098 (8)
C80.0223 (9)0.0252 (9)0.0318 (10)0.0059 (7)0.0130 (7)0.0071 (7)
C90.0314 (11)0.0360 (11)0.0426 (12)0.0168 (8)0.0214 (9)0.0214 (9)
C100.0287 (10)0.0331 (10)0.0395 (11)0.0105 (8)0.0193 (8)0.0149 (9)
C110.0343 (10)0.0203 (8)0.0271 (9)0.0026 (7)0.0152 (8)0.0047 (7)
C120.0404 (11)0.0278 (10)0.0330 (10)0.0144 (8)0.0149 (9)0.0122 (8)
C130.0237 (9)0.0321 (10)0.0357 (11)0.0115 (7)0.0123 (8)0.0096 (8)
C140.0269 (10)0.0271 (9)0.0386 (11)0.0086 (7)0.0189 (8)0.0070 (8)
C150.0185 (8)0.0178 (8)0.0187 (8)0.0002 (6)0.0073 (6)0.0038 (6)
C160.0178 (8)0.0193 (8)0.0235 (8)−0.0016 (6)0.0115 (6)0.0050 (6)
C170.0220 (9)0.0221 (8)0.0302 (9)0.0002 (6)0.0164 (7)0.0048 (7)
C180.0184 (8)0.0195 (8)0.0205 (8)0.0010 (6)0.0092 (6)0.0052 (6)
C190.0185 (8)0.0190 (8)0.0188 (8)0.0012 (6)0.0086 (6)0.0050 (6)
C200.0212 (9)0.0207 (8)0.0248 (8)0.0026 (6)0.0128 (7)0.0041 (7)
C210.0171 (8)0.0268 (9)0.0292 (9)0.0013 (6)0.0150 (7)0.0072 (7)
C220.0208 (8)0.0192 (8)0.0206 (8)−0.0018 (6)0.0085 (6)0.0067 (6)
C230.0186 (8)0.0170 (8)0.0247 (8)0.0009 (6)0.0103 (6)0.0048 (6)
C240.0331 (10)0.0230 (9)0.0271 (9)0.0009 (7)0.0165 (8)0.0084 (7)
C250.0330 (11)0.0257 (9)0.0395 (11)0.0051 (8)0.0238 (9)0.0133 (8)
C260.0347 (11)0.0220 (9)0.0281 (10)−0.0059 (7)0.0127 (8)0.0050 (7)
C270.0311 (10)0.0205 (8)0.0254 (9)−0.0025 (7)0.0143 (7)0.0051 (7)
C280.0219 (9)0.0187 (8)0.0270 (9)−0.0015 (6)0.0141 (7)0.0052 (7)
C290.0315 (10)0.0193 (8)0.0406 (11)0.0031 (7)0.0237 (8)0.0011 (7)
C300.0532 (15)0.0436 (13)0.0495 (14)0.0252 (11)0.0262 (12)0.0118 (11)
F10.0323 (7)0.0301 (6)0.0591 (8)0.0045 (5)0.0345 (6)0.0122 (6)
N10.0222 (7)0.0173 (7)0.0319 (8)0.0020 (5)0.0167 (6)0.0039 (6)
N20.0238 (8)0.0188 (7)0.0248 (8)−0.0020 (5)0.0126 (6)0.0070 (6)
N30.0251 (8)0.0222 (7)0.0341 (9)0.0002 (6)0.0152 (7)0.0111 (6)
O10.0395 (8)0.0201 (6)0.0445 (9)0.0001 (6)0.0227 (7)0.0043 (6)
O20.0312 (7)0.0333 (7)0.0440 (8)0.0142 (6)0.0213 (6)0.0214 (6)
O30.0235 (7)0.0362 (8)0.0410 (8)0.0066 (6)0.0180 (6)0.0017 (6)
O40.0338 (9)0.0575 (10)0.0628 (11)0.0180 (7)0.0291 (8)0.0375 (9)
O50.0542 (10)0.0213 (7)0.0401 (8)0.0064 (6)0.0314 (7)0.0087 (6)
O60.0214 (6)0.0181 (6)0.0350 (7)0.0007 (5)0.0144 (5)0.0017 (5)
O70.0322 (7)0.0191 (6)0.0358 (8)−0.0029 (5)0.0232 (6)0.0017 (5)
O80.0412 (9)0.0226 (7)0.0504 (9)−0.0047 (6)0.0370 (7)0.0003 (6)
O1W0.0325 (17)0.036 (2)0.0339 (17)0.0081 (9)0.0168 (11)0.0111 (9)
O1W'0.051 (3)0.092 (8)0.057 (3)0.018 (3)0.028 (2)0.035 (3)

Geometric parameters (Å, °)

Mn1—O3i2.0723 (16)C18—C191.401 (2)
Mn1—O2ii2.0997 (15)C18—C231.411 (2)
Mn1—O12.1028 (16)C19—C201.408 (2)
Mn1—O72.1170 (15)C20—C211.360 (2)
Mn1—O62.1827 (14)C20—H20A0.9300
C1—C61.390 (3)C21—F11.356 (2)
C1—C21.395 (3)C21—C221.414 (3)
C1—C71.496 (3)C22—C231.390 (3)
C2—C31.379 (3)C22—N21.402 (2)
C2—H2A0.9300C23—H23A0.9300
C3—C41.387 (3)C24—N21.476 (2)
C3—H3A0.9300C24—C251.515 (3)
C4—O51.378 (2)C24—H24A0.9700
C4—C51.385 (3)C24—H24B0.9700
C5—C61.387 (3)C25—N31.483 (3)
C5—H5A0.9300C25—H25A0.9700
C6—H6A0.9300C25—H25B0.9700
C7—O21.256 (3)C26—N31.490 (3)
C7—O11.264 (3)C26—C271.523 (2)
C8—C91.393 (3)C26—H26A0.9700
C8—C131.394 (3)C26—H26B0.9700
C8—C141.498 (3)C27—N21.468 (2)
C9—C101.386 (3)C27—H27A0.9700
C9—H9A0.9300C27—H27B0.9700
C10—C111.380 (3)C28—O81.252 (2)
C10—H10A0.9300C28—O71.259 (2)
C11—C121.387 (3)C29—N11.487 (2)
C11—O51.392 (2)C29—C301.494 (3)
C12—C131.381 (3)C29—H29A0.9700
C12—H12A0.9300C29—H29B0.9700
C13—H13A0.9300C30—H30A0.9600
C14—O31.251 (3)C30—H30B0.9600
C14—O41.263 (3)C30—H30C0.9600
C15—O61.255 (2)N3—H3B0.9000
C15—C161.437 (2)N3—H3C0.9000
C15—C191.456 (2)O2—Mn1ii2.0997 (15)
C16—C171.361 (3)O3—Mn1iii2.0723 (16)
C16—C281.507 (2)O1W—H10.8501
C17—N11.344 (2)O1W—H20.8500
C17—H17A0.9300O1W'—H10.9823
C18—N11.390 (2)O1W'—H21.1648
O3i—Mn1—O2ii94.25 (7)C19—C20—H20A120.1
O3i—Mn1—O199.66 (7)F1—C21—C20118.42 (16)
O2ii—Mn1—O1110.98 (7)F1—C21—C22118.55 (15)
O3i—Mn1—O7159.82 (6)C20—C21—C22123.01 (16)
O2ii—Mn1—O798.92 (6)C23—C22—N2123.11 (16)
O1—Mn1—O789.87 (6)C23—C22—C21117.17 (15)
O3i—Mn1—O683.01 (6)N2—C22—C21119.69 (16)
O2ii—Mn1—O690.64 (6)C22—C23—C18120.92 (16)
O1—Mn1—O6157.82 (6)C22—C23—H23A119.5
O7—Mn1—O681.62 (6)C18—C23—H23A119.5
C6—C1—C2118.53 (18)N2—C24—C25110.46 (16)
C6—C1—C7121.02 (17)N2—C24—H24A109.6
C2—C1—C7120.45 (18)C25—C24—H24A109.6
C3—C2—C1120.77 (18)N2—C24—H24B109.6
C3—C2—H2A119.6C25—C24—H24B109.6
C1—C2—H2A119.6H24A—C24—H24B108.1
C2—C3—C4119.57 (18)N3—C25—C24109.14 (16)
C2—C3—H3A120.2N3—C25—H25A109.9
C4—C3—H3A120.2C24—C25—H25A109.9
O5—C4—C5124.49 (18)N3—C25—H25B109.9
O5—C4—C3114.36 (17)C24—C25—H25B109.9
C5—C4—C3121.01 (18)H25A—C25—H25B108.3
C4—C5—C6118.62 (19)N3—C26—C27110.69 (15)
C4—C5—H5A120.7N3—C26—H26A109.5
C6—C5—H5A120.7C27—C26—H26A109.5
C5—C6—C1121.51 (18)N3—C26—H26B109.5
C5—C6—H6A119.2C27—C26—H26B109.5
C1—C6—H6A119.2H26A—C26—H26B108.1
O2—C7—O1125.27 (18)N2—C27—C26109.42 (16)
O2—C7—C1117.92 (18)N2—C27—H27A109.8
O1—C7—C1116.81 (18)C26—C27—H27A109.8
C9—C8—C13118.67 (19)N2—C27—H27B109.8
C9—C8—C14121.97 (18)C26—C27—H27B109.8
C13—C8—C14119.29 (17)H27A—C27—H27B108.2
C10—C9—C8121.04 (19)O8—C28—O7123.65 (15)
C10—C9—H9A119.5O8—C28—C16116.83 (16)
C8—C9—H9A119.5O7—C28—C16119.52 (16)
C11—C10—C9118.86 (19)N1—C29—C30111.51 (17)
C11—C10—H10A120.6N1—C29—H29A109.3
C9—C10—H10A120.6C30—C29—H29A109.3
C10—C11—C12121.40 (19)N1—C29—H29B109.3
C10—C11—O5116.02 (19)C30—C29—H29B109.3
C12—C11—O5122.25 (19)H29A—C29—H29B108.0
C13—C12—C11119.01 (19)C29—C30—H30A109.5
C13—C12—H12A120.5C29—C30—H30B109.5
C11—C12—H12A120.5H30A—C30—H30B109.5
C12—C13—C8120.93 (19)C29—C30—H30C109.5
C12—C13—H13A119.5H30A—C30—H30C109.5
C8—C13—H13A119.5H30B—C30—H30C109.5
O3—C14—O4124.1 (2)C17—N1—C18119.41 (15)
O3—C14—C8116.81 (19)C17—N1—C29117.84 (15)
O4—C14—C8119.05 (18)C18—N1—C29122.66 (15)
O6—C15—C16124.88 (15)C22—N2—C27115.72 (15)
O6—C15—C19119.88 (16)C22—N2—C24114.10 (14)
C16—C15—C19115.23 (15)C27—N2—C24111.64 (15)
C17—C16—C15119.13 (15)C25—N3—C26110.69 (15)
C17—C16—C28117.57 (16)C25—N3—H3B109.5
C15—C16—C28123.30 (16)C26—N3—H3B109.5
N1—C17—C16125.34 (17)C25—N3—H3C109.5
N1—C17—H17A117.3C26—N3—H3C109.5
C16—C17—H17A117.3H3B—N3—H3C108.1
N1—C18—C19118.70 (15)C7—O1—Mn1127.16 (13)
N1—C18—C23121.14 (16)C7—O2—Mn1ii139.01 (13)
C19—C18—C23120.16 (16)C14—O3—Mn1iii136.07 (15)
C18—C19—C20118.98 (16)C4—O5—C11120.98 (16)
C18—C19—C15122.11 (16)C15—O6—Mn1119.80 (11)
C20—C19—C15118.89 (16)C28—O7—Mn1131.03 (11)
C21—C20—C19119.72 (17)H1—O1W—H2120.8
C21—C20—H20A120.1H1—O1W'—H286.6

Symmetry codes: (i) x−1, y−1, z; (ii) −x+2, −y+1, −z+1; (iii) x+1, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W'—H2···O3i1.162.403.359 (14)138
O1W'—H2···O4i1.161.872.874 (12)142
N3—H3B···O8i0.901.802.694 (3)169
N3—H3C···O4iv0.901.832.716 (3)169

Symmetry codes: (i) x−1, y−1, z; (iv) x−1, y−2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2564).

References

  • An, Z., Huang, J. & Qi, W. (2007). Acta Cryst. E63, m2009.
  • Bruker (1997). SMART Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1990). SHELXTL-Plus Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Xiao, D.-R., Wang, E.-B., An, H.-Y., Su, Z.-M., Li, Y.-G., Gao, L., Sun, C.-Y. & Xu, L. (2005). Chem. Eur. J.11, 6673–6686. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography