PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m12.
Published online 2007 December 6. doi:  10.1107/S1600536807062526
PMCID: PMC2914905

[N-(8-Quinolylmeth­yl)imino­diethanol-κ4 N,N′,O,O′]bis­(thio­cyanato-κN)nickel(II) monohydrate

Abstract

In the neutral title complex, [Ni(NCS)2(C14H18N2O2)]·H2O, the NiII ion has a distorted octa­hedral geometry with cis-isothio­cyanate ligands.

Related literature

For diethano­lamine and N-substituted diethano­lamine transition metal coordination compounds, see: Saalfrank et al. (2001 [triangle]); Yilmaz et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00m12-scheme1.jpg

Experimental

Crystal data

  • [Ni(NCS)2(C14H18N2O2)]·H2O
  • M r = 439.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00m12-efi1.jpg
  • a = 14.693 (6) Å
  • b = 10.142 (4) Å
  • c = 13.965 (6) Å
  • β = 115.460 (6)°
  • V = 1878.9 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.28 mm−1
  • T = 293 (2) K
  • 0.15 × 0.10 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998 [triangle]) T min = 0.800, T max = 1.000 (expected range = 0.722–0.903)
  • 8517 measured reflections
  • 3783 independent reflections
  • 2673 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.097
  • S = 1.08
  • 3783 reflections
  • 235 parameters
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SMART; data reduction: SAINT (Bruker, 1999 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 1998 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062526/sg2198sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062526/sg2198Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Qinglan Project Foundation of the University of Jiangsu Province and the Science Foundation of the University of Science and Technology of Suzhou.

supplementary crystallographic information

Comment

As shown in Fig. 1, (I) is a neutral mononuclear complex, consisting of one nickel(II) ion, one N-(8-quinolylmethyl)iminodiethanol ligand, two SCN- and one uncoordinated H2O molecule. Each NiII center has a distorted octahedral geometry (Table 1) comprised of two isothiocyanate N atoms, the quinoline N donor, the tertiary N donor and two O donor of the ligand. The NSC groups are almost linear [178.9 (3)° and 178.2 (4)°], though he Ni—N—C linkage [158.8 (3)° and 171.5 (3)°] is bent. No intermolecular hydrogen bonds interactions were observed in the complex.

Experimental

Synthesis of the N-(8-quinolylmethyl)iminodiethanol ligand. 8-bromomethylquinoline (0.01 mol) was added to the solution of diethanolamine (0.03 mol) in ethanol (50 ml) with stirring. The mixture was refluxed for 15 h, and the solvent was evaporated. The residual oil was dissolved in 10 ml H2O, and the mixture was extracted with benzene and dried over MgSO4. The solvent was evaporated to give a pale yellow liquid, 1.92 g (78% yield). IR (cm-1): 3357vs, 2926 s, 2869 s, 1454 s, 1425m, 1321m, 1130m, 1071 s, 1438 s, 834m. 1H NMR (CDCl3): 4.21 (2H,S,-CH2Ar), 8.88 (1H, d, Ar—H2), 7.41 (1H, t, Ar—H3), 8.16 (1H, d, Ar—H4), 7.75 (1H, d, Ar—H5), 7.47(1H, t, Ar—H6), 7.57 (1H, d, Ar—H7), 2.74 (4H, t, NCH2C), 3.62 (4H, t, CH2O), 1.25 (2H, s, OH). Anal. Found: C, 68.51; H, 7.62; N, 11.39%; calculated for C14H18N2O2: C, 68.27; H, 7.37; N, 11.37.

Synthesis of the title complex (I). Solid KSCN (0.2 mmol) was added slowly with continuous stirring to a solution of NiSO4.6H2O (0.1 mmol) in distilled water (15 ml), the ligand (0.1 mmol) was dissolved in methanol (15 ml) and two solutions were mixed. The mixture was filtered, and green crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from the resulting solution at room temperature. Anal. Found: C, 43.28; H, 4.63; N, 12.78%; calculated for C16H20N4NiO3S2: C, 43.76; H, 4.59; N, 12.76%.

Refinement

H atoms were included in calculated positions refined as part of a riding with C—H distances of 0.93 Å (aromatic H) and 0.97 Å (ethyl H), and with Uiso(aromatic H, ethyl H) = 1.2Ueq(C). H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.93 Å (hydroxy H) and 0.852Å (H2O molecular H), and with Uiso (hydroxy H)= 1.2Ueq(O) and Uiso (H2O molecular H) = 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms and uncoordinated H2O molecular.

Crystal data

[Ni(NCS)2(C14H18N2O2)]·H2OF000 = 912
Mr = 439.19Dx = 1.553 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
a = 14.693 (6) ÅCell parameters from 783 reflections
b = 10.142 (4) Åθ = 2.6–25.0º
c = 13.965 (6) ŵ = 1.28 mm1
β = 115.460 (6)ºT = 293 (2) K
V = 1878.9 (13) Å3Block, green
Z = 40.15 × 0.10 × 0.08 mm

Data collection

Bruker SMART CCD area-detector diffractometer3783 independent reflections
Radiation source: fine-focus sealed tube2673 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.033
T = 293(2) Kθmax = 26.3º
[var phi] and ω scansθmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1998)h = −18→13
Tmin = 0.800, Tmax = 1.000k = −11→12
8517 measured reflectionsl = −6→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.097  w = 1/[σ2(Fo2) + (0.0367P)2 + 0.8315P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3783 reflectionsΔρmax = 0.50 e Å3
235 parametersΔρmin = −0.40 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.20147 (3)0.81623 (4)0.28870 (3)0.03578 (13)
O10.15578 (17)0.7221 (2)0.39381 (17)0.0461 (6)
H1A0.13440.63490.38680.055*
O20.05232 (18)0.8491 (2)0.1858 (2)0.0596 (7)
H2A0.01360.78630.13660.072*
O30.9140 (3)0.7780 (4)1.0013 (3)0.1413 (18)
H310.94480.84340.99060.212*
H320.89050.72750.94730.212*
N10.35206 (19)0.8079 (3)0.4011 (2)0.0399 (6)
N20.1710 (2)0.9792 (2)0.3581 (2)0.0391 (6)
N30.2430 (2)0.9143 (3)0.1887 (2)0.0513 (8)
N40.1975 (2)0.6352 (3)0.2271 (2)0.0500 (7)
S10.27361 (8)1.03083 (10)0.02603 (8)0.0606 (3)
S20.20208 (9)0.36476 (10)0.22047 (9)0.0679 (3)
C10.4045 (3)0.7104 (4)0.3897 (3)0.0561 (10)
H10.37900.66610.32510.067*
C20.4961 (3)0.6688 (4)0.4681 (4)0.0707 (12)
H20.53230.60180.45490.085*
C30.5309 (3)0.7265 (4)0.5624 (4)0.0699 (13)
H30.58960.69540.61750.084*
C40.4804 (3)0.8329 (4)0.5791 (3)0.0558 (10)
C50.5166 (3)0.9007 (5)0.6756 (3)0.0753 (13)
H50.57400.87070.73300.090*
C60.4696 (4)1.0072 (6)0.6857 (3)0.0832 (15)
H60.49361.05060.75070.100*
C70.3841 (3)1.0554 (4)0.6000 (3)0.0627 (11)
H70.35351.13190.60860.075*
C80.3448 (3)0.9931 (3)0.5044 (3)0.0453 (8)
C90.3920 (2)0.8769 (3)0.4943 (3)0.0418 (8)
C100.2622 (3)1.0574 (3)0.4120 (3)0.0457 (8)
H10A0.24421.13880.43610.055*
H10B0.28791.08070.36090.055*
C110.1257 (3)0.9385 (3)0.4299 (3)0.0528 (9)
H11A0.05290.93720.39070.063*
H11B0.14291.00260.48660.063*
C120.1611 (3)0.8060 (4)0.4765 (3)0.0543 (9)
H12A0.22990.81100.53090.065*
H12B0.11870.77240.50850.065*
C130.0982 (3)1.0567 (3)0.2689 (3)0.0522 (9)
H13A0.13251.09630.23020.063*
H13B0.07151.12720.29620.063*
C140.0131 (3)0.9727 (4)0.1949 (3)0.0636 (11)
H14A−0.03690.96170.22240.076*
H14B−0.01911.01450.12590.076*
C150.2565 (2)0.9625 (3)0.1223 (3)0.0412 (8)
C160.1984 (2)0.5241 (4)0.2227 (2)0.0410 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0407 (2)0.0316 (2)0.0351 (2)0.00054 (19)0.01630 (17)0.00133 (19)
O10.0596 (15)0.0355 (12)0.0487 (13)−0.0080 (11)0.0285 (12)−0.0020 (11)
O20.0500 (15)0.0436 (15)0.0632 (16)0.0030 (12)0.0033 (13)−0.0080 (13)
O30.129 (3)0.119 (3)0.089 (3)0.042 (3)−0.034 (2)−0.044 (2)
N10.0388 (15)0.0357 (15)0.0473 (15)0.0007 (13)0.0204 (13)0.0018 (13)
N20.0401 (15)0.0323 (14)0.0452 (15)0.0015 (12)0.0185 (13)0.0009 (12)
N30.066 (2)0.0496 (18)0.0418 (16)−0.0036 (15)0.0270 (16)0.0034 (15)
N40.068 (2)0.0354 (16)0.0477 (17)0.0002 (15)0.0261 (16)−0.0028 (14)
S10.0704 (7)0.0682 (7)0.0519 (6)−0.0214 (5)0.0346 (5)0.0013 (5)
S20.0805 (8)0.0359 (5)0.0753 (7)−0.0001 (5)0.0221 (6)−0.0013 (5)
C10.043 (2)0.051 (2)0.077 (3)0.0035 (18)0.028 (2)−0.002 (2)
C20.041 (2)0.053 (3)0.116 (4)0.0086 (19)0.031 (3)0.011 (3)
C30.034 (2)0.066 (3)0.093 (3)0.000 (2)0.012 (2)0.028 (3)
C40.037 (2)0.064 (3)0.059 (2)−0.0102 (19)0.0132 (18)0.011 (2)
C50.052 (3)0.100 (4)0.052 (3)−0.017 (3)0.001 (2)0.013 (3)
C60.074 (3)0.116 (4)0.047 (3)−0.037 (3)0.015 (2)−0.020 (3)
C70.064 (3)0.065 (3)0.059 (2)−0.015 (2)0.026 (2)−0.018 (2)
C80.044 (2)0.047 (2)0.046 (2)−0.0124 (17)0.0198 (16)−0.0067 (17)
C90.0385 (19)0.0432 (19)0.0433 (19)−0.0064 (16)0.0173 (16)0.0044 (16)
C100.051 (2)0.0290 (17)0.057 (2)−0.0036 (16)0.0235 (18)−0.0068 (16)
C110.059 (2)0.050 (2)0.061 (2)0.0010 (18)0.036 (2)−0.0048 (19)
C120.072 (3)0.051 (2)0.054 (2)0.000 (2)0.039 (2)0.0027 (19)
C130.053 (2)0.0356 (19)0.063 (2)0.0103 (17)0.0205 (19)0.0040 (18)
C140.052 (2)0.058 (3)0.067 (3)0.013 (2)0.012 (2)0.003 (2)
C150.0418 (19)0.0401 (19)0.0387 (18)−0.0025 (15)0.0143 (15)−0.0036 (15)
C160.043 (2)0.048 (2)0.0321 (17)−0.0027 (16)0.0161 (15)−0.0015 (16)

Geometric parameters (Å, °)

Ni1—N32.011 (3)C3—C41.385 (6)
Ni1—N42.018 (3)C3—H30.9300
Ni1—N22.061 (3)C4—C51.398 (6)
Ni1—O22.067 (2)C4—C91.403 (5)
Ni1—O12.089 (2)C5—C61.322 (7)
Ni1—N12.093 (3)C5—H50.9300
O1—C121.409 (4)C6—C71.399 (6)
O1—H1A0.9300C6—H60.9300
O2—C141.408 (4)C7—C81.362 (5)
O2—H2A0.9300C7—H70.9300
O3—H310.8520C8—C91.406 (5)
O3—H320.8520C8—C101.488 (5)
N1—C11.305 (4)C10—H10A0.9700
N1—C91.368 (4)C10—H10B0.9700
N2—C101.457 (4)C11—C121.486 (5)
N2—C131.472 (4)C11—H11A0.9700
N2—C111.481 (4)C11—H11B0.9700
N3—C151.139 (4)C12—H12A0.9700
N4—C161.129 (4)C12—H12B0.9700
S1—C151.625 (3)C13—C141.499 (5)
S2—C161.617 (4)C13—H13A0.9700
C1—C21.385 (6)C13—H13B0.9700
C1—H10.9300C14—H14A0.9700
C2—C31.326 (6)C14—H14B0.9700
C2—H20.9300
N3—Ni1—N496.64 (12)C6—C5—H5119.8
N3—Ni1—N297.00 (11)C4—C5—H5119.8
N4—Ni1—N2163.40 (11)C5—C6—C7120.8 (4)
N3—Ni1—O289.15 (12)C5—C6—H6119.6
N4—Ni1—O291.29 (11)C7—C6—H6119.6
N2—Ni1—O279.51 (10)C8—C7—C6121.6 (4)
N3—Ni1—O1177.48 (10)C8—C7—H7119.2
N4—Ni1—O185.70 (10)C6—C7—H7119.2
N2—Ni1—O180.54 (10)C7—C8—C9117.9 (4)
O2—Ni1—O189.84 (10)C7—C8—C10119.4 (3)
N3—Ni1—N190.10 (12)C9—C8—C10122.3 (3)
N4—Ni1—N196.35 (11)N1—C9—C4120.3 (3)
N2—Ni1—N193.04 (10)N1—C9—C8119.7 (3)
O2—Ni1—N1172.36 (10)C4—C9—C8120.0 (3)
O1—Ni1—N190.59 (10)N2—C10—C8115.8 (3)
C12—O1—Ni1112.29 (19)N2—C10—H10A108.3
C12—O1—H1A123.9C8—C10—H10A108.3
Ni1—O1—H1A123.9N2—C10—H10B108.3
C14—O2—Ni1115.7 (2)C8—C10—H10B108.3
C14—O2—H2A122.1H10A—C10—H10B107.4
Ni1—O2—H2A122.1N2—C11—C12112.0 (3)
H31—O3—H32110.9N2—C11—H11A109.2
C1—N1—C9118.0 (3)C12—C11—H11A109.2
C1—N1—Ni1115.4 (2)N2—C11—H11B109.2
C9—N1—Ni1125.2 (2)C12—C11—H11B109.2
C10—N2—C13108.6 (3)H11A—C11—H11B107.9
C10—N2—C11112.5 (3)O1—C12—C11107.5 (3)
C13—N2—C11110.3 (3)O1—C12—H12A110.2
C10—N2—Ni1110.02 (19)C11—C12—H12A110.2
C13—N2—Ni1104.8 (2)O1—C12—H12B110.2
C11—N2—Ni1110.26 (19)C11—C12—H12B110.2
C15—N3—Ni1171.5 (3)H12A—C12—H12B108.5
C16—N4—Ni1158.8 (3)N2—C13—C14111.6 (3)
N1—C1—C2123.9 (4)N2—C13—H13A109.3
N1—C1—H1118.0C14—C13—H13A109.3
C2—C1—H1118.0N2—C13—H13B109.3
C3—C2—C1118.7 (4)C14—C13—H13B109.3
C3—C2—H2120.7H13A—C13—H13B108.0
C1—C2—H2120.7O2—C14—C13108.4 (3)
C2—C3—C4120.3 (4)O2—C14—H14A110.0
C2—C3—H3119.8C13—C14—H14A110.0
C4—C3—H3119.8O2—C14—H14B110.0
C3—C4—C5122.5 (4)C13—C14—H14B110.0
C3—C4—C9118.3 (4)H14A—C14—H14B108.4
C5—C4—C9119.2 (4)N3—C15—S1178.9 (3)
C6—C5—C4120.3 (4)N4—C16—S2178.2 (4)
N3—Ni1—O1—C12−32 (3)O1—Ni1—N4—C16−22.4 (8)
N4—Ni1—O1—C12169.9 (2)N1—Ni1—N4—C1667.7 (8)
N2—Ni1—O1—C12−19.4 (2)C9—N1—C1—C23.0 (5)
O2—Ni1—O1—C12−98.8 (2)Ni1—N1—C1—C2−163.8 (3)
N1—Ni1—O1—C1273.5 (2)N1—C1—C2—C33.4 (6)
N3—Ni1—O2—C14−82.8 (3)C1—C2—C3—C4−4.9 (6)
N4—Ni1—O2—C14−179.4 (3)C2—C3—C4—C5−177.1 (4)
N2—Ni1—O2—C1414.5 (3)C2—C3—C4—C90.2 (6)
O1—Ni1—O2—C1494.9 (3)C3—C4—C5—C6175.3 (4)
N1—Ni1—O2—C141.6 (9)C9—C4—C5—C6−1.9 (6)
N3—Ni1—N1—C1−84.8 (3)C4—C5—C6—C7−1.1 (7)
N4—Ni1—N1—C111.9 (3)C5—C6—C7—C81.7 (7)
N2—Ni1—N1—C1178.2 (3)C6—C7—C8—C90.8 (6)
O2—Ni1—N1—C1−169.2 (7)C6—C7—C8—C10−172.1 (4)
O1—Ni1—N1—C197.6 (3)C1—N1—C9—C4−7.9 (5)
N3—Ni1—N1—C9109.5 (3)Ni1—N1—C9—C4157.5 (2)
N4—Ni1—N1—C9−153.9 (2)C1—N1—C9—C8171.4 (3)
N2—Ni1—N1—C912.4 (3)Ni1—N1—C9—C8−23.2 (4)
O2—Ni1—N1—C925.1 (9)C3—C4—C9—N16.4 (5)
O1—Ni1—N1—C9−68.1 (2)C5—C4—C9—N1−176.3 (3)
N3—Ni1—N2—C10−62.0 (2)C3—C4—C9—C8−172.9 (3)
N4—Ni1—N2—C10153.0 (4)C5—C4—C9—C84.4 (5)
O2—Ni1—N2—C10−149.8 (2)C7—C8—C9—N1176.9 (3)
O1—Ni1—N2—C10118.6 (2)C10—C8—C9—N1−10.4 (5)
N1—Ni1—N2—C1028.5 (2)C7—C8—C9—C4−3.8 (5)
N3—Ni1—N2—C1354.6 (2)C10—C8—C9—C4168.9 (3)
N4—Ni1—N2—C13−90.4 (4)C13—N2—C10—C8−179.4 (3)
O2—Ni1—N2—C13−33.2 (2)C11—N2—C10—C858.1 (4)
O1—Ni1—N2—C13−124.8 (2)Ni1—N2—C10—C8−65.3 (3)
N1—Ni1—N2—C13145.1 (2)C7—C8—C10—N2−125.4 (3)
N3—Ni1—N2—C11173.3 (2)C9—C8—C10—N262.1 (4)
N4—Ni1—N2—C1128.3 (5)C10—N2—C11—C12−93.4 (3)
O2—Ni1—N2—C1185.5 (2)C13—N2—C11—C12145.1 (3)
O1—Ni1—N2—C11−6.1 (2)Ni1—N2—C11—C1229.8 (4)
N1—Ni1—N2—C11−96.2 (2)Ni1—O1—C12—C1139.9 (3)
N4—Ni1—N3—C1553 (2)N2—C11—C12—O1−45.8 (4)
N2—Ni1—N3—C15−117 (2)C10—N2—C13—C14166.7 (3)
O2—Ni1—N3—C15−38 (2)C11—N2—C13—C14−69.5 (4)
O1—Ni1—N3—C15−104 (3)Ni1—N2—C13—C1449.1 (3)
N1—Ni1—N3—C15150 (2)Ni1—O2—C14—C138.5 (4)
N3—Ni1—N4—C16158.5 (8)N2—C13—C14—O2−38.5 (4)
N2—Ni1—N4—C16−56.4 (10)Ni1—N3—C15—S120 (20)
O2—Ni1—N4—C16−112.2 (8)Ni1—N4—C16—S2−31 (11)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2198).

References

  • Bruker (1998). SHELXTL and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Saalfrank, R. F., Bertnt, I. & Hampel, F. (2001). Chem. Eur. J.7, 2770–2774. [PubMed]
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1998). SADABS University of Göttingen, Germany.
  • Yilmaz, V. T., Karadag, A., Thöne, C. & Herbst-Irmer, R. (2000). Acta Cryst. C56, 948–949. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography