PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o9.
Published online 2007 December 6. doi:  10.1107/S1600536807061934
PMCID: PMC2914899

(2R*,3R*,4aS*,6aR*,11aS*,11bS*)-Methyl 2-acet­oxy-11b-hydr­oxy-3,7-dimethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodeca­hydro­phenanthro[3,2-b]furan-3-carboxyl­ate

Abstract

In the title compound, C22H30O6, the conformation of the mol­ecule is dictated by an intra­molecular C—H(...)O contact. The crystal structure is stabilized via inter­molecular C—H(...)O, O—H(...)O and C—H(...)π contacts.

Related literature

For related literature see: Ruggiero et al. (1997 [triangle]); Chopra et al. (1992 [triangle]); Pullaih (2006 [triangle]); Kirtikar & Basu (1993 [triangle]); Parrota (2000 [triangle]); Boeyens (1978 [triangle]); Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-000o9-scheme1.jpg

Experimental

Crystal data

  • C22H30O6
  • M r = 390.46
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-000o9-efi1.jpg
  • a = 12.2339 (14) Å
  • b = 12.8744 (15) Å
  • c = 12.8783 (15) Å
  • V = 2028.4 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 (2) K
  • 0.25 × 0.21 × 0.14 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.918, T max = 0.987
  • 15340 measured reflections
  • 2160 independent reflections
  • 1875 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.094
  • S = 1.08
  • 2160 reflections
  • 258 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SMART; data reduction: SAINT (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999 [triangle]) and CAMERON (Watkin et al., 1993 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807061934/fj2076sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061934/fj2076Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc. We thank Mr Saikat Sen for helpful discussions.

supplementary crystallographic information

Comment

The title compound was isolated from the mature seed kernels of Caesalpinia decapetala (Roth.) Alston., which belongs to the family Fabaceae (Caesalpinioideae), a thorny woody climbing shrub, native to tropical and subtropical Asia and distributed in India, China, Sri Lanka, Malaysia, Korea, Vietnam and Japan(Parrota, 2000). In India, the plant is popularly known as Mysore thorn and locally as "Kurudu gajjuga". Its leaves and seeds are known to have anthelmintic, antipyretic, astringent, purgative, emmenagogue, febrifuge, and analgesic properties, and are thus used in the indegenous system of medicine for the treatment of dysentery and malarial fever (Kirtikar & Basu, 1993; Pullaih, 2006). The stem bark of the plant is widely used in the tanning industry and as a laxative (Chopra et al., 1992).

The title compound is a tetracyclic molecule, consisting of a furan ring fused to a syn,anti,anti-perhydrophenanthrene system. The molecular conformation of the compound(I) leads to the formation of a C—H···O intra molecular hydrogen bond. The puckering parameters (Cremer & Pople,1975) for the cyclohexane ring A [q2 = 0.0612 (3) Å, q3 = 0.540 (3) Å, [var phi]2 = 96 (2)°, QT = 0.543 (3) Å and θ2 = 6.46 (2)°] describe a distorted chair conformation.The total puckering amplitude QT is only slightly smaller than that for ideal chair (0.63 Å). [var phi]2 is close to 90°, which corresponds to a twist-boat conformation. Because of the 1,3 diaxial interactions, the cyclohexane ring A is distorted from an ideal chair conformation. This is most evident in the twisting of the six-membered ring at C17, which allows the C12—C17—C16 angle to increse to 113.01°. As evident from its puckering parameters [q2 = 0.023 (3) Å, q3 = 0.568 (2) Å, [var phi]2 = -82.4 (3)°, QT = 0.568 (2) Å and θ2 = 2.34 (3)°], the conformation of the cyclohexane ring B can also be best described as chair, distorted in the same manner as ring A due to 1,3 diaxial interaction. On account of its fusion with the furan ring, ring C has the expected half chair conformation of a cyclohexene ring [q2 = 0.328 (3) Å, q3 = 0.269 (3) Å, [var phi]2 = -124.68 (1)°, QT = 0.424 (2) Å and θ2 = 50.63 (3)°].(Boeyens, 1978)

The crystal structure of (I)is generated by intermolecular O—H···O and C—H···O contacts forming a zig zag pattern parallel to the b axis. An intermolecular C—H···π interaction between H22A and the furan ring further stabilizes the packing.

Experimental

Mature seed kernels of Caesalpinia decapetala were collected from Bhalki, Bidar District, Karnataka. A specimen is deposited in the herbarium Department of Botany, Gulbarga University, Gulbarga, Karnataka, India. with voucher specimen No.HGUG-209. Seeds were finely ground (particle size 2 mm) and extracted with soxhlet extractor with n-hexane for 20 h and maintaining the Temperature at 333 K Oil recovered was weighed (29/100 g ms) and stored in air tight container for further analysis. The oil obtained was taken in glass test tube covered with aluminium foil and kept in refrigerator, after 15 days of storage granular particles were setteed at the bottom of the test tube. These particles were separated and washed with n-hexane and then it was repeatedly washed with petroleum ether and dried at the room temperature, these fine powdered particles were re-dissolved in double distilled alcohol and kept for 4–8 days for crystallization. After 24 h formation of pointed colorless crystals were formed at the bottom of the container.

Refinement

All hydrogen atoms were initially located in a difference Fourier map. The methine (CH) and methylene (CH2) H atoms were then placed in geometrically idealized positions and allowed to ride on their parent atoms with C—H distances in the range 0.97–0.98 Å and Uiso(H) = 1.2Ueq(C). The CH3 and OH hydrogen atoms were constrained to an ideal geometry with C—H distances as 0.96 Å and Uiso(H) = 1.5Ueq(C), and O—H distances fixed at 0.82 Å and Uiso(H) = 1.5Ueq(O). During refinement, each methyl and hydroxyl group was however allowed to rotate freely about its C—C and C—O bond respectively.

The absolute configuration could not be determined from the diffraction data, and the configuration shown is arbitary.

Figures

Fig. 1.
ORTEP diagram with 50% probability ellipsoids. The dotted lines show the intramolecular C—H···O contact.
Fig. 2.
Packing diagram of (I). The dotted lines indicate intermolecular contacts.

Crystal data

C22H30O6F000 = 840
Mr = 390.46Dx = 1.279 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 729 reflections
a = 12.2339 (14) Åθ = 2.2–22.9º
b = 12.8744 (15) ŵ = 0.09 mm1
c = 12.8783 (15) ÅT = 293 (2) K
V = 2028.4 (4) Å3Block, colorless
Z = 40.25 × 0.21 × 0.14 mm

Data collection

Bruker SMART CCD area-detector diffractometer2160 independent reflections
Radiation source: fine-focus sealed tube1875 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.037
T = 293(2) Kθmax = 25.5º
[var phi] and ω scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −14→13
Tmin = 0.918, Tmax = 0.987k = −15→15
15340 measured reflectionsl = −15→15

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040  w = 1/[σ2(Fo2) + (0.0464P)2 + 0.3619P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.22 e Å3
2160 reflectionsΔρmin = −0.14 e Å3
258 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapFlack parameter: −0.9 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C90.3474 (3)0.7674 (2)0.3974 (3)0.0652 (10)
H9A0.41080.81050.40590.098*
H9B0.29290.78690.44740.098*
H9C0.31860.77610.32870.098*
C22−0.0003 (3)0.2087 (3)0.5937 (3)0.0731 (11)
H22A−0.04290.25430.63660.110*
H22B0.07570.22600.60010.110*
H22C−0.01160.13820.61540.110*
C19−0.1573 (3)0.5306 (3)0.0682 (2)0.0616 (9)
H19A−0.10780.50620.01580.092*
H19B−0.17650.60150.05430.092*
H19C−0.22200.48850.06790.092*
C20−0.1288 (2)0.4491 (2)0.3766 (2)0.0503 (7)
H20A−0.14610.52160.37110.075*
H20B−0.11140.43260.44740.075*
H20C−0.19050.40860.35470.075*
C21−0.0350 (3)0.2205 (2)0.4829 (2)0.0517 (8)
O6−0.1078 (2)0.1728 (2)0.4426 (2)0.0828 (8)
O50.02457 (17)0.29224 (15)0.43436 (15)0.0500 (5)
O20.14299 (15)0.46942 (13)0.15370 (12)0.0366 (4)
H20.13430.52870.13190.055*
C120.0648 (2)0.50420 (18)0.32357 (18)0.0301 (5)
H120.03990.57050.29450.036*
C60.2613 (2)0.5535 (2)0.27923 (19)0.0337 (6)
H60.23440.61910.25050.040*
O4−0.10551 (16)0.52378 (14)0.16832 (15)0.0461 (5)
O10.56112 (16)0.55596 (18)0.21108 (18)0.0565 (6)
C130.1683 (2)0.47287 (19)0.26309 (18)0.0297 (5)
C110.0915 (2)0.5238 (2)0.43841 (19)0.0369 (6)
H11A0.02620.54730.47410.044*
H11B0.11510.45940.47050.044*
C17−0.0302 (2)0.4242 (2)0.3072 (2)0.0362 (6)
C140.2016 (2)0.3619 (2)0.2903 (2)0.0375 (6)
H14A0.26600.34310.25070.045*
H14B0.22020.35840.36350.045*
C70.2860 (2)0.5744 (2)0.39496 (19)0.0324 (6)
H70.30960.50830.42530.039*
C100.1810 (2)0.6052 (2)0.4498 (2)0.0356 (6)
H10A0.15520.67060.42160.043*
H10B0.19620.61560.52300.043*
O3−0.08866 (18)0.35433 (16)0.14050 (16)0.0563 (6)
C80.3792 (2)0.6534 (2)0.4140 (2)0.0407 (7)
H80.40270.64590.48630.049*
C160.0060 (2)0.3107 (2)0.3240 (2)0.0413 (7)
H16−0.05200.26420.29960.050*
C150.1106 (2)0.2847 (2)0.2674 (2)0.0437 (7)
H15A0.09660.28390.19330.052*
H15B0.13440.21570.28760.052*
C50.3634 (2)0.5242 (3)0.2148 (2)0.0548 (8)
H5A0.37070.44920.21270.066*
H5B0.35440.54890.14420.066*
C30.4741 (2)0.6255 (2)0.3464 (2)0.0404 (6)
C18−0.0742 (2)0.4278 (2)0.1953 (2)0.0384 (6)
C40.4630 (2)0.5699 (2)0.2598 (2)0.0428 (7)
C10.6359 (3)0.6066 (3)0.2721 (3)0.0648 (10)
H10.71040.60990.25820.078*
C20.5880 (3)0.6503 (3)0.3537 (3)0.0569 (8)
H2A0.62180.68920.40540.068*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C90.056 (2)0.0416 (17)0.098 (3)−0.0105 (15)0.007 (2)−0.0149 (17)
C220.106 (3)0.061 (2)0.052 (2)−0.014 (2)0.017 (2)0.0037 (17)
C190.072 (2)0.0600 (19)0.0530 (19)0.0043 (18)−0.0258 (18)0.0001 (16)
C200.0325 (15)0.0645 (19)0.0538 (17)−0.0025 (14)0.0042 (14)−0.0057 (16)
C210.064 (2)0.0372 (15)0.0538 (18)−0.0114 (16)0.0164 (17)−0.0016 (13)
O60.104 (2)0.0746 (16)0.0696 (16)−0.0517 (16)0.0108 (16)−0.0020 (13)
O50.0554 (12)0.0465 (11)0.0480 (12)−0.0137 (10)−0.0006 (11)0.0090 (9)
O20.0452 (11)0.0382 (9)0.0266 (9)−0.0011 (9)−0.0021 (8)−0.0024 (7)
C120.0298 (13)0.0295 (12)0.0312 (12)0.0017 (10)0.0000 (10)−0.0010 (10)
C60.0348 (13)0.0363 (13)0.0301 (13)−0.0047 (11)−0.0004 (11)0.0009 (11)
O40.0492 (11)0.0427 (10)0.0463 (11)0.0064 (9)−0.0158 (10)−0.0059 (9)
O10.0363 (11)0.0690 (14)0.0642 (13)−0.0013 (10)0.0135 (10)0.0010 (12)
C130.0301 (12)0.0341 (12)0.0249 (12)−0.0001 (11)−0.0029 (10)−0.0009 (10)
C110.0349 (14)0.0439 (14)0.0319 (13)0.0005 (12)0.0018 (12)−0.0028 (12)
C170.0298 (13)0.0397 (14)0.0390 (14)−0.0019 (12)−0.0009 (12)−0.0026 (12)
C140.0338 (14)0.0401 (14)0.0385 (15)0.0058 (12)0.0037 (12)0.0019 (12)
C70.0333 (13)0.0348 (13)0.0291 (13)−0.0003 (11)−0.0022 (11)0.0024 (11)
C100.0442 (15)0.0370 (13)0.0257 (13)0.0005 (12)−0.0026 (12)−0.0029 (11)
O30.0641 (14)0.0463 (11)0.0586 (13)−0.0059 (11)−0.0183 (12)−0.0121 (10)
C80.0375 (15)0.0475 (16)0.0370 (15)−0.0064 (13)−0.0054 (13)−0.0027 (12)
C160.0400 (15)0.0395 (14)0.0445 (16)−0.0069 (12)−0.0020 (13)0.0027 (12)
C150.0496 (16)0.0302 (13)0.0512 (17)0.0026 (13)0.0000 (15)0.0032 (12)
C50.0432 (17)0.077 (2)0.0444 (16)−0.0173 (16)0.0143 (14)−0.0112 (16)
C30.0329 (14)0.0425 (14)0.0458 (17)−0.0036 (12)−0.0079 (13)0.0083 (13)
C180.0284 (13)0.0395 (14)0.0473 (16)−0.0052 (11)−0.0039 (12)−0.0035 (13)
C40.0335 (15)0.0516 (16)0.0434 (16)−0.0037 (13)0.0065 (13)0.0046 (13)
C10.0292 (16)0.083 (2)0.082 (3)−0.0071 (16)−0.0034 (18)0.012 (2)
C20.0401 (17)0.069 (2)0.061 (2)−0.0079 (16)−0.0107 (17)0.0060 (17)

Geometric parameters (Å, °)

C9—C81.532 (4)O1—C11.370 (4)
C9—H9A0.9600C13—C141.526 (3)
C9—H9B0.9600C11—C101.523 (4)
C9—H9C0.9600C11—H11A0.9700
C22—C211.496 (5)C11—H11B0.9700
C22—H22A0.9600C17—C181.539 (4)
C22—H22B0.9600C17—C161.543 (4)
C22—H22C0.9600C14—C151.521 (4)
C19—O41.439 (3)C14—H14A0.9700
C19—H19A0.9600C14—H14B0.9700
C19—H19B0.9600C7—C101.519 (4)
C19—H19C0.9600C7—C81.547 (3)
C20—C171.536 (4)C7—H70.9800
C20—H20A0.9600C10—H10A0.9700
C20—H20B0.9600C10—H10B0.9700
C20—H20C0.9600O3—C181.193 (3)
C21—O61.200 (4)C8—C31.495 (4)
C21—O51.333 (3)C8—H80.9800
O5—C161.459 (3)C16—C151.509 (4)
O2—C131.443 (3)C16—H160.9800
O2—H20.8200C15—H15A0.9700
C12—C111.535 (3)C15—H15B0.9700
C12—C131.541 (3)C5—C41.472 (4)
C12—C171.567 (3)C5—H5A0.9700
C12—H120.9800C5—H5B0.9700
C6—C71.544 (3)C3—C41.332 (4)
C6—C51.545 (4)C3—C21.433 (4)
C6—C131.553 (3)C1—C21.328 (5)
C6—H60.9800C1—H10.9300
O4—C181.340 (3)C2—H2A0.9300
O1—C41.367 (3)
C8—C9—H9A109.5C18—C17—C12111.5 (2)
C8—C9—H9B109.5C16—C17—C12113.0 (2)
H9A—C9—H9B109.5C15—C14—C13111.9 (2)
C8—C9—H9C109.5C15—C14—H14A109.2
H9A—C9—H9C109.5C13—C14—H14A109.2
H9B—C9—H9C109.5C15—C14—H14B109.2
C21—C22—H22A109.5C13—C14—H14B109.2
C21—C22—H22B109.5H14A—C14—H14B107.9
H22A—C22—H22B109.5C10—C7—C6109.2 (2)
C21—C22—H22C109.5C10—C7—C8112.2 (2)
H22A—C22—H22C109.5C6—C7—C8114.3 (2)
H22B—C22—H22C109.5C10—C7—H7106.9
O4—C19—H19A109.5C6—C7—H7106.9
O4—C19—H19B109.5C8—C7—H7106.9
H19A—C19—H19B109.5C7—C10—C11112.6 (2)
O4—C19—H19C109.5C7—C10—H10A109.1
H19A—C19—H19C109.5C11—C10—H10A109.1
H19B—C19—H19C109.5C7—C10—H10B109.1
C17—C20—H20A109.5C11—C10—H10B109.1
C17—C20—H20B109.5H10A—C10—H10B107.8
H20A—C20—H20B109.5C3—C8—C9110.3 (2)
C17—C20—H20C109.5C3—C8—C7108.8 (2)
H20A—C20—H20C109.5C9—C8—C7114.9 (2)
H20B—C20—H20C109.5C3—C8—H8107.5
O6—C21—O5123.9 (3)C9—C8—H8107.5
O6—C21—C22124.9 (3)C7—C8—H8107.5
O5—C21—C22111.3 (3)O5—C16—C15107.6 (2)
C21—O5—C16119.0 (2)O5—C16—C17109.6 (2)
C13—O2—H2109.5C15—C16—C17112.7 (2)
C11—C12—C13110.8 (2)O5—C16—H16109.0
C11—C12—C17113.3 (2)C15—C16—H16109.0
C13—C12—C17111.69 (19)C17—C16—H16109.0
C11—C12—H12106.9C16—C15—C14112.5 (2)
C13—C12—H12106.9C16—C15—H15A109.1
C17—C12—H12106.9C14—C15—H15A109.1
C7—C6—C5113.7 (2)C16—C15—H15B109.1
C7—C6—C13112.88 (19)C14—C15—H15B109.1
C5—C6—C13110.9 (2)H15A—C15—H15B107.8
C7—C6—H6106.2C4—C5—C6111.1 (2)
C5—C6—H6106.2C4—C5—H5A109.4
C13—C6—H6106.2C6—C5—H5A109.4
C18—O4—C19114.5 (2)C4—C5—H5B109.4
C4—O1—C1105.1 (2)C6—C5—H5B109.4
O2—C13—C14104.64 (19)H5A—C5—H5B108.0
O2—C13—C12108.96 (19)C4—C3—C2105.9 (3)
C14—C13—C12110.4 (2)C4—C3—C8122.5 (2)
O2—C13—C6107.97 (18)C2—C3—C8131.6 (3)
C14—C13—C6113.5 (2)O3—C18—O4122.4 (3)
C12—C13—C6111.06 (19)O3—C18—C17125.6 (3)
C10—C11—C12111.1 (2)O4—C18—C17111.7 (2)
C10—C11—H11A109.4C3—C4—O1111.4 (2)
C12—C11—H11A109.4C3—C4—C5129.0 (3)
C10—C11—H11B109.4O1—C4—C5119.6 (2)
C12—C11—H11B109.4C2—C1—O1111.2 (3)
H11A—C11—H11B108.0C2—C1—H1124.4
C20—C17—C18105.3 (2)O1—C1—H1124.4
C20—C17—C16110.0 (2)C1—C2—C3106.4 (3)
C18—C17—C16105.0 (2)C1—C2—H2A126.8
C20—C17—C12111.5 (2)C3—C2—H2A126.8
O6—C21—O5—C16−3.9 (4)C21—O5—C16—C17119.3 (3)
C22—C21—O5—C16176.9 (3)C20—C17—C16—O5−53.6 (3)
C11—C12—C13—O2−172.05 (19)C18—C17—C16—O5−166.4 (2)
C17—C12—C13—O260.6 (3)C12—C17—C16—O571.8 (3)
C11—C12—C13—C1473.6 (2)C20—C17—C16—C15−173.3 (2)
C17—C12—C13—C14−53.8 (3)C18—C17—C16—C1573.8 (3)
C11—C12—C13—C6−53.2 (3)C12—C17—C16—C15−48.0 (3)
C17—C12—C13—C6179.41 (19)O5—C16—C15—C14−69.3 (3)
C7—C6—C13—O2172.8 (2)C17—C16—C15—C1451.6 (3)
C5—C6—C13—O2−58.2 (3)C13—C14—C15—C16−57.2 (3)
C7—C6—C13—C14−71.6 (3)C7—C6—C5—C4−27.6 (4)
C5—C6—C13—C1457.3 (3)C13—C6—C5—C4−156.2 (2)
C7—C6—C13—C1253.4 (3)C9—C8—C3—C4−103.6 (3)
C5—C6—C13—C12−177.6 (2)C7—C8—C3—C423.2 (4)
C13—C12—C11—C1055.8 (3)C9—C8—C3—C274.5 (4)
C17—C12—C11—C10−177.7 (2)C7—C8—C3—C2−158.7 (3)
C11—C12—C17—C2047.8 (3)C19—O4—C18—O3−0.2 (4)
C13—C12—C17—C20173.8 (2)C19—O4—C18—C17−174.3 (2)
C11—C12—C17—C18165.3 (2)C20—C17—C18—O3−107.8 (3)
C13—C12—C17—C18−68.8 (3)C16—C17—C18—O38.3 (4)
C11—C12—C17—C16−76.7 (3)C12—C17—C18—O3131.1 (3)
C13—C12—C17—C1649.3 (3)C20—C17—C18—O466.1 (3)
O2—C13—C14—C15−59.1 (3)C16—C17—C18—O4−177.8 (2)
C12—C13—C14—C1557.9 (3)C12—C17—C18—O4−55.1 (3)
C6—C13—C14—C15−176.6 (2)C2—C3—C4—O10.6 (3)
C5—C6—C7—C10178.4 (2)C8—C3—C4—O1179.1 (2)
C13—C6—C7—C10−54.1 (3)C2—C3—C4—C5180.0 (3)
C5—C6—C7—C851.8 (3)C8—C3—C4—C5−1.5 (5)
C13—C6—C7—C8179.3 (2)C1—O1—C4—C3−0.1 (3)
C6—C7—C10—C1156.6 (3)C1—O1—C4—C5−179.6 (3)
C8—C7—C10—C11−175.6 (2)C6—C5—C4—C33.3 (5)
C12—C11—C10—C7−58.6 (3)C6—C5—C4—O1−177.4 (3)
C10—C7—C8—C3−172.5 (2)C4—O1—C1—C2−0.4 (4)
C6—C7—C8—C3−47.4 (3)O1—C1—C2—C30.7 (4)
C10—C7—C8—C9−48.3 (3)C4—C3—C2—C1−0.8 (4)
C6—C7—C8—C976.7 (3)C8—C3—C2—C1−179.1 (3)
C21—O5—C16—C15−117.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O6i0.822.112.929 (3)173
C11—H11B···O50.972.473.092 (3)122
C15—H15B···O4ii0.972.563.460 (3)154
C22—H22A···Cgiii0.962.703.54 (3)147

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) −x+1/2, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2076).

References

  • Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct.8, 317–320.
  • Bruker (2004). SMART (Version 5.628) and SAINT (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chopra, R. N., Chopra, I. C. & Verma, B. S. (1992). Supplement to Glossary of Indian Medicinal Plants, p. 19. New Delhi: CSIR.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kirtikar, K. R. & Basu, B. D. (1993). Indian Medicinal Plants, Vol. 2, pp. 849–850. New Delhi: Sri Satguru Publication.
  • Parrota, J. A. (2000). Healing Plants of Peninsular India, p. 328. Wallingford: CABI Publishing.
  • Pullaih, T. (2006). Encyclopedia of World Medicinal Plants, Vol. 1. New Delhi: Regency Publications.
  • Ruggiero, S. G., Rodrigues, B. L., Fernandes, N. G., Stefani, G. M. & Veloso, D. P. (1997). Acta Cryst. C53, 982–984.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography