PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o1–o2.
Published online 2007 December 6. doi:  10.1107/S160053680706182X
PMCID: PMC2914892

(2E)-3-(4-Methyl­phen­yl)-1-(3-nitro­phen­yl)prop-2-en-1-one

Abstract

The title compound, C16H13NO3, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. The dihedral angle between the mean planes of the 4-methyl­phenyl and 3-nitro­phenyl groups is 4.0 (3)° in mol­ecule A and 16.2 (7)° in mol­ecule B. Inter­molecular C—H(...)O hydrogen bonding involving the O atoms of the 3-nitro­phenyl group of both independent mol­ecules link the mol­ecules into layers approximately parallel to the (110) plane. The layers are held together by π–π stacking inter­actions between the 4-methyl­phenyl ring of mol­ecule A and the 3-nitro­phenyl ring of mol­ecule B of the adjacent layer, with the distance between the centroids of inter­acting rings being 3.6987 (7) Å.

Related literature

For related structures, see: Butcher, Jasinski, Narayana et al. (2007 [triangle]); Butcher, Jasinski, Yathirajan, Narayana et al. (2007 [triangle]); Butcher, Jasinski, Yathirajan, Veena et al. (2007 [triangle]); Rosli et al. (2007 [triangle]); Patil et al. (2007 [triangle]). For related literature, see: Dimmock et al. (1999 [triangle]); Go et al. (2005 [triangle]); Goto et al. (1991 [triangle]); Uchida et al. (1998 [triangle]); Tam et al. (1989 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-000o1-scheme1.jpg

Experimental

Crystal data

  • C16H13NO3
  • M r = 267.27
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-000o1-efi1.jpg
  • a = 8.0951 (3) Å
  • b = 11.5088 (5) Å
  • c = 14.6970 (5) Å
  • α = 80.351 (3)°
  • β = 74.830 (3)°
  • γ = 84.416 (3)°
  • V = 1300.78 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 (2) K
  • 0.41 × 0.35 × 0.28 mm

Data collection

  • Oxford Diffraction Gemini R CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.874, T max = 0.974
  • 19776 measured reflections
  • 8636 independent reflections
  • 4667 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.127
  • S = 0.97
  • 8636 reflections
  • 363 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: CrysAlisPro (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2000 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680706182X/ci2518sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706182X/ci2518Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KL thanks Mangalore University for use of their research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Chalcones can be easily obtained from the Claisen-Schmidt reaction of aromatic aldehydes and aromatic ketones. Chalcones have been reported to possess many useful properties including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumour and anticancer activities (Dimmock et al. 1999; Go et al. 2005). They are also important intermediates in organic synthesis. Among several organic compounds reported to have NLO properties, chalcone derivatives are recognized material because of their excellent blue light transmittance and good crystallization ability. They provide necessary configuration to show NLO properties having two planar rings connected through a conjugated double bond (Goto et al. 1991; Uchida et al. 1998; Tam et al. 1989). The crystal structures of 1-(3-hydroxyphenyl)-3-(4-methylphenyl)prop-2-en-1-one (Butcher, Jasinski, Narayana et al., 2007), (2E)-1-(4-methylphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (Butcher, Jasinski, Yathirajan, Veena et al., 2007), (E)-3-(4-fluorophenyl)-1-(4-methylphenyl)prop-2-en-1-one (Butcher, Jasinski, Yathirajan, Narayana et al. 2007), 3-(dimethylaminophenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Rosli et al. 2007) and 3-(5-bromo-2-thienyl)-1-(4-nitrophenyl)prop-2-en-1-one (Patil et al. 2007) have been reported. We report here the crystal structure of a new chalcone, the title compound.

The title compound crystallizes with two independent molecules (A and B) in the asymmetric unit (Fig. 1). The dihedral angle between the mean planes of the 4-methylphenyl and 3-nitrophenyl groups is 4.0 (3)° in molecule A and 16.2 (7)° in molecule B. Crystal packing is stabilized by intermolecular C—H···O hydrogen bonding involving the O atoms on the 3-nitrophenyl group of both indpendent molecules. These hydrogen bonds (Table 1) link the molecules into a layer approximately parallel to the (1 1 0) plane (Fig. 2). Intermolecular π-π stacking interactions occur between 4-methylphenyl ring of molecule A at (x, y, z) and 3-nitrophenyl ring of molecule B of the adjacent layer at (1 - x, 1 - y, -z), with the distance between the centroids of interacting rings being 3.6987 (7) Å.

Experimental

A solution of 1-(3-nitrophenyl)ethanone (1.65 g, 0.01 mol) and 4-methylbenzaldehyde (1.20 g, 0.01 mol) in ethanol (25 ml) was stirred well and 10% NaOH solution (5 ml) was added. The reaction mixture was stirred for about 6 h and filtered. The product was crystallized from acetone (m.p. 414–416 K). Single crystals suitable for X-ray structure determination were grown by slow evaporation of an acetone solution of the title compound at room temperature. Analysis found: C 71.82, H 4.85, N 5.20%; C16H13NO3 requires: C 71.90, H 4.90, N 5.24%.

Refinement

All H atoms were placed in calculated positions (C—H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.16–1.21Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound, showing atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Packing diagram of the title compound, viewed down the a axis. Dashed lines indicate intermolecular C—H···O hydrogen bonds.

Crystal data

C16H13NO3Z = 4
Mr = 267.27F000 = 560
Triclinic, P1Dx = 1.365 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.0951 (3) ÅCell parameters from 6626 reflections
b = 11.5088 (5) Åθ = 4.5–32.4º
c = 14.6970 (5) ŵ = 0.10 mm1
α = 80.351 (3)ºT = 296 (2) K
β = 74.830 (3)ºPrism, pale yellow
γ = 84.416 (3)º0.41 × 0.35 × 0.28 mm
V = 1300.78 (9) Å3

Data collection

Oxford Diffraction Gemini R CCD diffractometer8636 independent reflections
Radiation source: fine-focus sealed tube4667 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.027
Detector resolution: 10.5081 pixels mm-1θmax = 32.5º
T = 296(2) Kθmin = 4.5º
[var phi] and ω scansh = −12→12
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007)k = −15→17
Tmin = 0.874, Tmax = 0.974l = −22→22
19776 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.127  w = 1/[σ2(Fo2) + (0.0653P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
8636 reflectionsΔρmax = 0.31 e Å3
363 parametersΔρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1A−0.10825 (12)0.78753 (8)0.47805 (6)0.0472 (2)
O2A−0.17664 (12)0.86596 (9)0.15922 (6)0.0496 (2)
O3A−0.03310 (14)0.76460 (9)0.05116 (7)0.0600 (3)
N1A−0.07106 (13)0.78738 (9)0.13266 (7)0.0367 (2)
C1A0.05600 (14)0.67882 (10)0.35935 (8)0.0291 (2)
C2A0.17987 (15)0.59163 (10)0.33036 (8)0.0342 (3)
H2A0.23670.54880.37370.041*
C3A0.22047 (15)0.56733 (11)0.23722 (9)0.0388 (3)
H3A0.30270.50770.21910.047*
C4A0.13914 (15)0.63148 (11)0.17161 (8)0.0360 (3)
H4A0.16600.61650.10900.043*
C5A0.01681 (14)0.71848 (10)0.20163 (8)0.0294 (2)
C6A−0.02749 (14)0.74350 (10)0.29349 (8)0.0302 (2)
H6A−0.11140.80230.31140.036*
C7A0.00284 (14)0.70867 (10)0.45916 (8)0.0320 (2)
C8A0.08663 (15)0.64361 (10)0.53138 (8)0.0341 (3)
H8A0.17540.58770.51400.041*
C9A0.03681 (15)0.66381 (10)0.62182 (8)0.0341 (3)
H9A−0.05540.71830.63590.041*
C10A0.10965 (14)0.61071 (10)0.70091 (8)0.0303 (2)
C11A0.24015 (15)0.52191 (10)0.69233 (8)0.0329 (3)
H11A0.28160.49300.63470.039*
C12A0.30868 (15)0.47626 (11)0.76861 (8)0.0354 (3)
H12A0.39520.41660.76160.043*
C13A0.25029 (15)0.51804 (11)0.85585 (8)0.0362 (3)
C14A0.11819 (16)0.60523 (12)0.86462 (8)0.0400 (3)
H14A0.07630.63360.92250.048*
C15A0.04786 (16)0.65058 (11)0.78910 (8)0.0387 (3)
H15A−0.04150.70820.79700.046*
C16A0.32905 (19)0.47144 (14)0.93769 (9)0.0519 (4)
H16A0.37310.53540.95690.078*
H16B0.42080.41440.91820.078*
H16C0.24360.43480.99030.078*
O1B0.39815 (12)0.28759 (8)0.17553 (7)0.0511 (2)
O2B0.38505 (13)0.39995 (8)0.47951 (7)0.0530 (3)
O3B0.47675 (14)0.27633 (10)0.58517 (7)0.0658 (3)
N1B0.45688 (13)0.30623 (10)0.50460 (7)0.0416 (3)
C1B0.55580 (14)0.17912 (10)0.27830 (8)0.0313 (2)
C2B0.65291 (15)0.07736 (11)0.30205 (9)0.0371 (3)
H2B0.69740.02690.25720.045*
C3B0.68412 (16)0.05034 (11)0.39189 (9)0.0405 (3)
H3B0.7478−0.01850.40710.049*
C4B0.62101 (15)0.12525 (11)0.45862 (9)0.0391 (3)
H4B0.64260.10840.51870.047*
C5B0.52520 (14)0.22563 (10)0.43411 (8)0.0325 (3)
C6B0.48975 (14)0.25382 (10)0.34598 (8)0.0329 (3)
H6B0.42290.32160.33210.039*
C7B0.51234 (15)0.21124 (11)0.18375 (8)0.0359 (3)
C8B0.60755 (16)0.15048 (11)0.10342 (8)0.0377 (3)
H8B0.70490.10240.10840.045*
C9B0.55435 (15)0.16429 (10)0.02373 (8)0.0349 (3)
H9B0.45630.21340.02300.042*
C10B0.63097 (14)0.11180 (10)−0.06276 (8)0.0315 (2)
C11B0.76586 (15)0.02570 (11)−0.06979 (9)0.0371 (3)
H11B0.8095−0.0019−0.01710.045*
C12B0.83539 (15)−0.01901 (11)−0.15411 (8)0.0377 (3)
H12B0.9257−0.0760−0.15740.045*
C13B0.77214 (16)0.02004 (11)−0.23457 (9)0.0368 (3)
C14B0.63582 (16)0.10371 (11)−0.22680 (8)0.0372 (3)
H14B0.59060.1302−0.27910.045*
C15B0.56619 (15)0.14839 (11)−0.14243 (8)0.0366 (3)
H15B0.47420.2040−0.13880.044*
C16B0.84893 (18)−0.02696 (13)−0.32704 (9)0.0475 (3)
H16D0.88710.0373−0.37670.071*
H16E0.7641−0.0671−0.34290.071*
H16F0.9446−0.0811−0.32050.071*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1A0.0582 (6)0.0466 (6)0.0373 (5)0.0196 (4)−0.0185 (4)−0.0101 (4)
O2A0.0500 (5)0.0565 (6)0.0455 (5)0.0211 (5)−0.0237 (4)−0.0121 (5)
O3A0.0856 (8)0.0647 (7)0.0368 (5)0.0213 (5)−0.0313 (5)−0.0167 (5)
N1A0.0390 (6)0.0390 (6)0.0347 (5)0.0027 (5)−0.0154 (4)−0.0061 (4)
C1A0.0325 (6)0.0252 (6)0.0309 (6)−0.0012 (4)−0.0124 (4)−0.0013 (4)
C2A0.0374 (6)0.0291 (6)0.0359 (6)0.0043 (5)−0.0131 (5)−0.0012 (5)
C3A0.0396 (7)0.0336 (7)0.0410 (7)0.0071 (5)−0.0083 (5)−0.0067 (5)
C4A0.0418 (7)0.0341 (7)0.0326 (6)0.0000 (5)−0.0107 (5)−0.0058 (5)
C5A0.0300 (5)0.0293 (6)0.0299 (5)−0.0001 (4)−0.0107 (4)−0.0028 (5)
C6A0.0315 (6)0.0261 (6)0.0343 (6)0.0018 (4)−0.0122 (4)−0.0041 (5)
C7A0.0340 (6)0.0300 (6)0.0324 (6)−0.0003 (5)−0.0103 (5)−0.0033 (5)
C8A0.0353 (6)0.0340 (7)0.0335 (6)0.0038 (5)−0.0130 (5)−0.0029 (5)
C9A0.0390 (6)0.0296 (6)0.0362 (6)0.0043 (5)−0.0150 (5)−0.0059 (5)
C10A0.0311 (6)0.0324 (6)0.0288 (5)−0.0020 (5)−0.0095 (4)−0.0056 (5)
C11A0.0385 (6)0.0328 (6)0.0293 (6)−0.0004 (5)−0.0105 (5)−0.0077 (5)
C12A0.0370 (6)0.0366 (7)0.0331 (6)0.0037 (5)−0.0108 (5)−0.0063 (5)
C13A0.0380 (6)0.0414 (7)0.0311 (6)−0.0010 (5)−0.0136 (5)−0.0038 (5)
C14A0.0452 (7)0.0480 (8)0.0290 (6)0.0035 (6)−0.0105 (5)−0.0130 (5)
C15A0.0419 (7)0.0389 (7)0.0383 (6)0.0082 (5)−0.0147 (5)−0.0130 (5)
C16A0.0619 (9)0.0624 (10)0.0353 (7)0.0088 (7)−0.0240 (6)−0.0064 (6)
O1B0.0595 (6)0.0492 (6)0.0496 (5)0.0225 (5)−0.0259 (4)−0.0164 (4)
O2B0.0731 (7)0.0400 (6)0.0460 (5)0.0174 (5)−0.0179 (5)−0.0135 (4)
O3B0.0876 (8)0.0755 (8)0.0382 (5)0.0277 (6)−0.0280 (5)−0.0186 (5)
N1B0.0448 (6)0.0441 (7)0.0365 (6)0.0055 (5)−0.0113 (5)−0.0105 (5)
C1B0.0278 (5)0.0314 (6)0.0338 (6)0.0008 (5)−0.0060 (4)−0.0062 (5)
C2B0.0344 (6)0.0346 (7)0.0401 (6)0.0040 (5)−0.0053 (5)−0.0092 (5)
C3B0.0380 (7)0.0359 (7)0.0436 (7)0.0085 (5)−0.0098 (5)−0.0015 (5)
C4B0.0391 (7)0.0395 (7)0.0371 (6)0.0024 (5)−0.0122 (5)0.0006 (5)
C5B0.0311 (6)0.0334 (6)0.0319 (6)0.0005 (5)−0.0062 (5)−0.0059 (5)
C6B0.0318 (6)0.0294 (6)0.0381 (6)0.0015 (5)−0.0114 (5)−0.0043 (5)
C7B0.0368 (6)0.0331 (7)0.0396 (7)0.0023 (5)−0.0125 (5)−0.0086 (5)
C8B0.0389 (6)0.0377 (7)0.0381 (6)0.0051 (5)−0.0130 (5)−0.0082 (5)
C9B0.0348 (6)0.0308 (6)0.0376 (6)0.0000 (5)−0.0090 (5)−0.0018 (5)
C10B0.0332 (6)0.0298 (6)0.0315 (6)−0.0042 (5)−0.0096 (4)−0.0009 (5)
C11B0.0422 (7)0.0348 (7)0.0360 (6)−0.0011 (5)−0.0172 (5)0.0010 (5)
C12B0.0351 (6)0.0354 (7)0.0408 (7)0.0018 (5)−0.0087 (5)−0.0042 (5)
C13B0.0403 (7)0.0345 (7)0.0368 (6)−0.0098 (5)−0.0097 (5)−0.0035 (5)
C14B0.0399 (7)0.0398 (7)0.0344 (6)−0.0048 (5)−0.0156 (5)−0.0010 (5)
C15B0.0369 (6)0.0327 (7)0.0424 (7)0.0003 (5)−0.0164 (5)−0.0029 (5)
C16B0.0509 (8)0.0494 (8)0.0419 (7)−0.0040 (6)−0.0095 (6)−0.0084 (6)

Geometric parameters (Å, °)

O1A—C7A1.2266 (14)O2B—N1B1.2224 (14)
O2A—N1A1.2222 (13)O3B—N1B1.2242 (14)
O3A—N1A1.2227 (13)N1B—O2B1.2224 (14)
N1A—C5A1.4698 (15)N1B—C5B1.4704 (15)
C1A—C2A1.3849 (16)C1B—C6B1.3904 (16)
C1A—C6A1.3967 (16)C1B—C2B1.3924 (17)
C1A—C7A1.5050 (15)C1B—C7B1.5000 (17)
C2A—C3A1.3910 (16)C2B—C3B1.3876 (17)
C2A—H2A0.93C2B—H2B0.93
C3A—C4A1.3811 (17)C3B—C4B1.3790 (18)
C3A—H3A0.93C3B—H3B0.93
C4A—C5A1.3800 (17)C4B—C5B1.3778 (17)
C4A—H4A0.93C4B—H4B0.93
C5A—C6A1.3751 (15)C5B—C6B1.3788 (16)
C6A—H6A0.93C6B—H6B0.93
C7A—C8A1.4692 (16)C7B—C8B1.4739 (16)
C8A—C9A1.3372 (16)C8B—C9B1.3307 (16)
C8A—H8A0.93C8B—H8B0.93
C9A—C10A1.4571 (16)C9B—C10B1.4620 (16)
C9A—H9A0.93C9B—H9B0.93
C10A—C11A1.3928 (16)C10B—C15B1.3916 (16)
C10A—C15A1.3985 (15)C10B—C11B1.3963 (17)
C11A—C12A1.3827 (16)C11B—C12B1.3819 (17)
C11A—H11A0.93C11B—H11B0.93
C12A—C13A1.3943 (16)C12B—C13B1.3988 (17)
C12A—H12A0.93C12B—H12B0.93
C13A—C14A1.3890 (18)C13B—C14B1.3865 (18)
C13A—C16A1.5031 (17)C13B—C16B1.5050 (17)
C14A—C15A1.3810 (17)C14B—C15B1.3825 (17)
C14A—H14A0.93C14B—H14B0.93
C15A—H15A0.93C15B—H15B0.93
C16A—H16A0.96C16B—H16D0.96
C16A—H16B0.96C16B—H16E0.96
C16A—H16C0.96C16B—H16F0.96
O1B—C7B1.2272 (15)
O2A—N1A—O3A123.18 (11)O2B—N1B—O3B123.47 (11)
O2A—N1A—C5A118.36 (9)O2B—N1B—O3B123.47 (11)
O3A—N1A—C5A118.45 (10)O2B—N1B—C5B118.42 (10)
C2A—C1A—C6A119.17 (10)O2B—N1B—C5B118.42 (10)
C2A—C1A—C7A123.95 (10)O3B—N1B—C5B118.11 (11)
C6A—C1A—C7A116.88 (10)C6B—C1B—C2B119.13 (11)
C1A—C2A—C3A120.87 (11)C6B—C1B—C7B117.43 (11)
C1A—C2A—H2A119.6C2B—C1B—C7B123.40 (10)
C3A—C2A—H2A119.6C3B—C2B—C1B120.77 (11)
C4A—C3A—C2A120.24 (12)C3B—C2B—H2B119.6
C4A—C3A—H3A119.9C1B—C2B—H2B119.6
C2A—C3A—H3A119.9C4B—C3B—C2B120.20 (12)
C5A—C4A—C3A118.08 (11)C4B—C3B—H3B119.9
C5A—C4A—H4A121.0C2B—C3B—H3B119.9
C3A—C4A—H4A121.0C5B—C4B—C3B118.39 (12)
C6A—C5A—C4A122.98 (11)C5B—C4B—H4B120.8
C6A—C5A—N1A118.30 (10)C3B—C4B—H4B120.8
C4A—C5A—N1A118.72 (10)C4B—C5B—C6B122.72 (11)
C5A—C6A—C1A118.66 (11)C4B—C5B—N1B118.99 (11)
C5A—C6A—H6A120.7C6B—C5B—N1B118.29 (11)
C1A—C6A—H6A120.7C5B—C6B—C1B118.78 (11)
O1A—C7A—C8A121.56 (10)C5B—C6B—H6B120.6
O1A—C7A—C1A119.20 (10)C1B—C6B—H6B120.6
C8A—C7A—C1A119.24 (10)O1B—C7B—C8B121.84 (11)
C9A—C8A—C7A120.81 (11)O1B—C7B—C1B118.90 (11)
C9A—C8A—H8A119.6C8B—C7B—C1B119.26 (11)
C7A—C8A—H8A119.6C9B—C8B—C7B120.09 (12)
C8A—C9A—C10A127.80 (11)C9B—C8B—H8B120.0
C8A—C9A—H9A116.1C7B—C8B—H8B120.0
C10A—C9A—H9A116.1C8B—C9B—C10B128.03 (12)
C11A—C10A—C15A118.21 (10)C8B—C9B—H9B116.0
C11A—C10A—C9A122.66 (10)C10B—C9B—H9B116.0
C15A—C10A—C9A119.13 (11)C15B—C10B—C11B117.82 (11)
C12A—C11A—C10A120.69 (10)C15B—C10B—C9B118.74 (11)
C12A—C11A—H11A119.7C11B—C10B—C9B123.44 (10)
C10A—C11A—H11A119.7C12B—C11B—C10B120.84 (11)
C11A—C12A—C13A121.17 (12)C12B—C11B—H11B119.6
C11A—C12A—H12A119.4C10B—C11B—H11B119.6
C13A—C12A—H12A119.4C11B—C12B—C13B121.04 (12)
C14A—C13A—C12A117.97 (11)C11B—C12B—H12B119.5
C14A—C13A—C16A120.87 (11)C13B—C12B—H12B119.5
C12A—C13A—C16A121.16 (12)C14B—C13B—C12B118.00 (11)
C15A—C14A—C13A121.26 (11)C14B—C13B—C16B120.67 (11)
C15A—C14A—H14A119.4C12B—C13B—C16B121.33 (12)
C13A—C14A—H14A119.4C15B—C14B—C13B120.95 (11)
C14A—C15A—C10A120.66 (12)C15B—C14B—H14B119.5
C14A—C15A—H15A119.7C13B—C14B—H14B119.5
C10A—C15A—H15A119.7C14B—C15B—C10B121.32 (12)
C13A—C16A—H16A109.5C14B—C15B—H15B119.3
C13A—C16A—H16B109.5C10B—C15B—H15B119.3
H16A—C16A—H16B109.5C13B—C16B—H16D109.5
C13A—C16A—H16C109.5C13B—C16B—H16E109.5
H16A—C16A—H16C109.5H16D—C16B—H16E109.5
H16B—C16A—H16C109.5C13B—C16B—H16F109.5
O2B—O2B—N1B0(10)H16D—C16B—H16F109.5
O2B—N1B—O2B0.00 (11)H16E—C16B—H16F109.5
C6A—C1A—C2A—C3A−0.59 (16)C6B—C1B—C2B—C3B−0.10 (16)
C7A—C1A—C2A—C3A178.84 (10)C7B—C1B—C2B—C3B−177.82 (10)
C1A—C2A—C3A—C4A1.01 (17)C1B—C2B—C3B—C4B−0.93 (17)
C2A—C3A—C4A—C5A−0.60 (17)C2B—C3B—C4B—C5B0.89 (17)
C3A—C4A—C5A—C6A−0.22 (17)C3B—C4B—C5B—C6B0.17 (17)
C3A—C4A—C5A—N1A−179.90 (10)C3B—C4B—C5B—N1B179.91 (10)
O2A—N1A—C5A—C6A1.82 (15)O2B—N1B—C5B—C4B173.67 (11)
O3A—N1A—C5A—C6A−179.32 (10)O2B—N1B—C5B—C4B173.67 (11)
O2A—N1A—C5A—C4A−178.48 (10)O3B—N1B—C5B—C4B−5.53 (16)
O3A—N1A—C5A—C4A0.38 (15)O2B—N1B—C5B—C6B−6.57 (16)
C4A—C5A—C6A—C1A0.62 (16)O2B—N1B—C5B—C6B−6.57 (16)
N1A—C5A—C6A—C1A−179.69 (9)O3B—N1B—C5B—C6B174.22 (11)
C2A—C1A—C6A—C5A−0.20 (15)C4B—C5B—C6B—C1B−1.18 (17)
C7A—C1A—C6A—C5A−179.68 (9)N1B—C5B—C6B—C1B179.07 (9)
C2A—C1A—C7A—O1A179.98 (11)C2B—C1B—C6B—C5B1.12 (15)
C6A—C1A—C7A—O1A−0.57 (15)C7B—C1B—C6B—C5B178.98 (10)
C2A—C1A—C7A—C8A0.68 (16)C6B—C1B—C7B—O1B−13.01 (16)
C6A—C1A—C7A—C8A−179.87 (9)C2B—C1B—C7B—O1B164.75 (11)
O1A—C7A—C8A—C9A4.01 (17)C6B—C1B—C7B—C8B167.00 (10)
C1A—C7A—C8A—C9A−176.71 (10)C2B—C1B—C7B—C8B−15.23 (16)
C7A—C8A—C9A—C10A−177.55 (10)O1B—C7B—C8B—C9B−10.23 (18)
C8A—C9A—C10A—C11A−4.54 (18)C1B—C7B—C8B—C9B169.75 (10)
C8A—C9A—C10A—C15A174.93 (11)C7B—C8B—C9B—C10B−179.97 (10)
C15A—C10A—C11A—C12A−1.23 (16)C8B—C9B—C10B—C15B−172.74 (11)
C9A—C10A—C11A—C12A178.24 (10)C8B—C9B—C10B—C11B7.71 (18)
C10A—C11A—C12A—C13A−0.41 (17)C15B—C10B—C11B—C12B1.75 (16)
C11A—C12A—C13A—C14A1.45 (17)C9B—C10B—C11B—C12B−178.70 (10)
C11A—C12A—C13A—C16A−177.81 (11)C10B—C11B—C12B—C13B−0.39 (17)
C12A—C13A—C14A—C15A−0.83 (18)C11B—C12B—C13B—C14B−0.96 (16)
C16A—C13A—C14A—C15A178.43 (12)C11B—C12B—C13B—C16B179.09 (10)
C13A—C14A—C15A—C10A−0.82 (19)C12B—C13B—C14B—C15B0.92 (17)
C11A—C10A—C15A—C14A1.84 (17)C16B—C13B—C14B—C15B−179.13 (10)
C9A—C10A—C15A—C14A−177.65 (11)C13B—C14B—C15B—C10B0.48 (17)
O2B—O2B—N1B—O3B0.00 (5)C11B—C10B—C15B—C14B−1.80 (16)
O2B—O2B—N1B—C5B0.00 (8)C9B—C10B—C15B—C14B178.63 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2A—H2A···O2B0.932.553.4644 (16)170
C11A—H11A···O2B0.932.593.5156 (14)176
C2B—H2B···O2Ai0.932.513.4311 (16)171
C14A—H14A···O3Aii0.932.543.4455 (16)164

Symmetry codes: (i) x+1, y−1, z; (ii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2518).

References

  • Bruker (2000). SHELXTL Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Butcher, R. J., Jasinski, J. P., Narayana, B., Lakshmana, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3660.
  • Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Narayana, B. & Veena, K. (2007). Acta Cryst. E63, o3833.
  • Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Veena, K. & Narayana, B. (2007). Acta Cryst. E63, o3680.
  • Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem.6, 1125–1149. [PubMed]
  • Go, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem.12, 483–499. [PubMed]
  • Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698.
  • Oxford Diffraction (2007). CrysAlisPro (Version 171.31.8) and CrysAlis RED (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Patil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o785–o786.
  • Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2692.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Tam, W., Gurein, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett.154, 93–96.
  • Uchida, J., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdeuyim, A. & Wadanabe, Y. (1998). Mol. Cryst. Liq. Cryst.315, 135–140.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography