PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m2.
Published online 2007 December 6. doi:  10.1107/S1600536807061296
PMCID: PMC2914886

This article has been retractedRetraction in: Acta Crystallogr Sect E Struct Rep Online. 2012 July 01; 68(Pt 7): e14    See also: PMC Retraction Policy

μ-Oxido-bis­{chlorido[tris­(2-pyridylmeth­yl)amine]chromium(III)} bis(hexafluoridophosphate)

Abstract

The title compound, [Cr2Cl2O(C18H18N4)2](PF6)2, is isostructural with the VIII analogue. Each CrIII atom is chelated by the tetra­dentate tris­(2-pyridylmeth­yl)amine ligand via four N atoms, and further coordinated by one Cl atom and one bridging O atom, giving a slightly distorted octa­hedral coordination geometry. The dinuclear complex is centrosymmetric, with the bridging O atom lying on a centre of inversion.

Related literature

For the isostructural VIII analogue, see: Tajika et al. (2005 [triangle]). For more general related literature, see: Butler & Carrano (1991 [triangle]); Crans et al. (1989 [triangle]); Dey (1974 [triangle]); Chen & Zubieta (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-000m2-scheme1.jpg

Experimental

Crystal data

  • [Cr2Cl2O(C18H18N4)2](PF6)2
  • M r = 1061.57
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-000m2-efi1.jpg
  • a = 8.6107 (17) Å
  • b = 11.302 (2) Å
  • c = 12.798 (3) Å
  • α = 115.50 (3)°
  • β = 107.45 (3)°
  • γ = 91.50 (3)°
  • V = 1054.8 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.81 mm−1
  • T = 293 (2) K
  • 0.28 × 0.22 × 0.18 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.804, T max = 0.867
  • 8686 measured reflections
  • 3877 independent reflections
  • 3594 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.089
  • S = 1.00
  • 3877 reflections
  • 287 parameters
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2001 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807061296/bi2257sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061296/bi2257Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from Henan University (grant No.05YBGG013).

supplementary crystallographic information

Comment

A classical but nevertheless rapidly developing field of application for related metal-Schiff compounds is their use as catalysts in polymerization, oxidation reactions, and model examples for the interaction of metal ions within the active sites of enzymes (Butler & Carrano, 1991; Crans et al., 1989; Dey, 1974; Chen & Zubieta, 1990). In the dinuclear title compound (Fig. 1), each CrIII atom is chelated by the tetradentate ligand tris(2-pyridylmethyl)amine via four N atoms, and further coordinated by one Cl atom and one bridging O atom to give a slightly distorted octahedral coordination geometry.

Experimental

A mixture of chromium(III) trichloride (1 mmol) and tris(2-pyridylmethyl)amine (1 mmol) in 20 ml me thanol was refluxed for two hours. After cooling, the solution was filtered and the filtrate was evaporated naturally at room temperature. Blue blocks of the title compound were obtained after a few days with a yield of 31%. Elemental analysis calculated: C 40.39, H 3.35, N 10.44%; found: C 40.35, H 3.39, N 10.42%.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93 or 0.97 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure drawn with 30% probability displacement ellipsoids for the non-H atoms.

Crystal data

[Cr2Cl2O(C18H18N4)2](PF6)2Z = 1
Mr = 1061.57F000 = 536
Triclinic, P1Dx = 1.671 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.6107 (17) ÅCell parameters from 3877 reflections
b = 11.302 (2) Åθ = 3.0–25.5º
c = 12.798 (3) ŵ = 0.81 mm1
α = 115.50 (3)ºT = 293 (2) K
β = 107.45 (3)ºBlock, blue
γ = 91.50 (3)º0.28 × 0.22 × 0.18 mm
V = 1054.8 (4) Å3

Data collection

Bruker APEX II CCD diffractometer3877 independent reflections
Radiation source: fine-focus sealed tube3594 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.021
T = 293(2) Kθmax = 25.5º
[var phi] and ω scansθmin = 3.0º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −8→10
Tmin = 0.804, Tmax = 0.867k = −13→13
8686 measured reflectionsl = −15→15

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033  w = 1/[σ2(Fo2) + (0.0565P)2 + 0.3428P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.51 e Å3
3877 reflectionsΔρmin = −0.33 e Å3
287 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cr11.03745 (3)0.34679 (3)0.39271 (2)0.0408 (4)
C10.9871 (3)0.1897 (2)0.53070 (18)0.0447 (4)
H11.10180.19840.55730.054*
C20.8992 (3)0.1306 (2)0.5741 (2)0.0534 (5)
H20.95330.09980.62960.064*
C30.7284 (3)0.1173 (3)0.5340 (2)0.0605 (6)
H30.66620.07790.56260.073*
C40.6514 (3)0.1630 (2)0.4513 (2)0.0552 (5)
H40.53670.15370.42260.066*
C50.7464 (2)0.22306 (19)0.41135 (18)0.0425 (4)
C60.6721 (2)0.2874 (2)0.3310 (2)0.0490 (5)
H6A0.56430.23530.27300.059*
H6B0.65630.37570.38220.059*
C70.7467 (3)0.1753 (2)0.1450 (2)0.0573 (6)
H7A0.74430.20040.08110.069*
H7B0.63810.12530.12160.069*
C80.8712 (2)0.08565 (19)0.14924 (17)0.0414 (4)
C90.8351 (3)−0.0448 (2)0.0588 (2)0.0528 (5)
H90.7315−0.0793−0.00280.063*
C100.9546 (3)−0.1237 (2)0.0606 (2)0.0617 (6)
H100.9327−0.21190.00030.074*
C111.1069 (3)−0.0697 (2)0.1532 (2)0.0607 (6)
H111.1894−0.12080.15640.073*
C121.1346 (3)0.0605 (2)0.2404 (2)0.0526 (5)
H121.23740.09640.30280.063*
C130.7605 (3)0.4147 (2)0.23723 (19)0.0475 (5)
H13A0.74300.48810.30590.057*
H13B0.66510.39170.16390.057*
C140.9146 (3)0.4574 (2)0.21891 (17)0.0471 (5)
C150.9138 (4)0.5296 (2)0.1547 (2)0.0606 (6)
H150.81540.54820.11490.073*
C161.0629 (4)0.5734 (3)0.1512 (2)0.0728 (8)
H161.06500.62370.11000.087*
C171.2075 (4)0.5435 (3)0.2077 (3)0.0715 (7)
H171.30760.57210.20470.086*
C181.2007 (3)0.4704 (3)0.2686 (2)0.0610 (6)
H181.29780.44900.30690.073*
Cl11.31398 (6)0.35078 (6)0.48445 (5)0.05507 (17)
F10.5115 (2)0.90789 (16)0.13882 (17)0.0825 (5)
F20.4878 (2)0.8490 (2)0.27945 (15)0.0893 (5)
F30.5830 (3)0.6607 (2)0.1912 (2)0.1078 (7)
F40.7325 (2)0.8610 (2)0.24906 (17)0.0999 (6)
F50.6040 (2)0.72005 (19)0.04870 (17)0.0929 (6)
F60.36012 (19)0.71102 (16)0.08031 (14)0.0726 (4)
N11.0192 (2)0.13917 (16)0.23969 (15)0.0436 (4)
N21.0566 (2)0.42848 (18)0.27454 (16)0.0482 (4)
N30.91312 (19)0.23567 (15)0.45104 (15)0.0406 (3)
N40.7776 (2)0.29834 (16)0.26214 (15)0.0424 (4)
O11.00000.50000.50000.0420 (4)
P10.54870 (7)0.78424 (6)0.16549 (5)0.05276 (17)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cr10.0378 (11)0.0424 (10)0.0424 (10)0.0088 (8)0.0112 (8)0.0212 (8)
C10.0415 (10)0.0468 (10)0.0459 (10)0.0095 (8)0.0121 (8)0.0233 (8)
C20.0597 (14)0.0546 (12)0.0513 (12)0.0109 (10)0.0179 (10)0.0300 (10)
C30.0606 (14)0.0666 (14)0.0669 (14)0.0057 (11)0.0281 (11)0.0381 (12)
C40.0395 (11)0.0606 (13)0.0695 (14)0.0063 (9)0.0206 (10)0.0324 (11)
C50.0351 (9)0.0412 (9)0.0456 (10)0.0057 (7)0.0117 (8)0.0166 (8)
C60.0302 (9)0.0572 (12)0.0614 (12)0.0093 (8)0.0107 (8)0.0322 (10)
C70.0517 (13)0.0499 (12)0.0462 (11)0.0099 (9)−0.0011 (9)0.0127 (9)
C80.0424 (10)0.0438 (10)0.0403 (9)0.0052 (8)0.0153 (8)0.0207 (8)
C90.0562 (13)0.0484 (11)0.0497 (11)0.0027 (9)0.0185 (10)0.0189 (9)
C100.0769 (17)0.0441 (11)0.0634 (14)0.0138 (11)0.0334 (13)0.0178 (10)
C110.0653 (15)0.0551 (13)0.0714 (15)0.0256 (11)0.0342 (12)0.0297 (11)
C120.0460 (12)0.0572 (12)0.0570 (12)0.0167 (9)0.0199 (10)0.0265 (10)
C130.0504 (11)0.0490 (11)0.0410 (10)0.0162 (9)0.0097 (8)0.0224 (9)
C140.0599 (13)0.0426 (10)0.0358 (9)0.0112 (9)0.0152 (9)0.0162 (8)
C150.0864 (18)0.0503 (12)0.0451 (12)0.0140 (11)0.0197 (11)0.0237 (10)
C160.114 (2)0.0544 (13)0.0572 (14)0.0012 (14)0.0362 (15)0.0288 (12)
C170.084 (2)0.0710 (16)0.0683 (16)−0.0005 (14)0.0357 (14)0.0343 (13)
C180.0612 (14)0.0666 (14)0.0615 (14)0.0042 (11)0.0280 (11)0.0307 (12)
Cl10.0334 (3)0.0609 (3)0.0596 (3)0.0131 (2)0.0101 (2)0.0215 (2)
F10.0810 (11)0.0724 (10)0.0988 (12)0.0060 (8)0.0208 (9)0.0507 (9)
F20.0836 (12)0.1141 (14)0.0632 (9)0.0059 (10)0.0336 (8)0.0300 (9)
F30.1008 (15)0.1236 (16)0.163 (2)0.0524 (12)0.0641 (14)0.1074 (16)
F40.0483 (9)0.1549 (19)0.0854 (12)−0.0063 (10)0.0024 (8)0.0605 (12)
F50.0973 (13)0.0965 (12)0.0873 (12)0.0083 (10)0.0563 (10)0.0288 (10)
F60.0571 (9)0.0710 (9)0.0731 (9)−0.0042 (7)0.0144 (7)0.0248 (7)
N10.0425 (9)0.0456 (9)0.0444 (9)0.0116 (7)0.0164 (7)0.0210 (7)
N20.0526 (10)0.0497 (9)0.0451 (9)0.0087 (8)0.0187 (8)0.0231 (8)
N30.0348 (8)0.0421 (8)0.0447 (8)0.0082 (6)0.0125 (7)0.0205 (7)
N40.0376 (8)0.0442 (8)0.0411 (8)0.0101 (7)0.0077 (6)0.0195 (7)
O10.0384 (10)0.0430 (10)0.0424 (10)0.0081 (8)0.0119 (8)0.0190 (8)
P10.0429 (3)0.0665 (4)0.0529 (3)0.0075 (3)0.0151 (2)0.0321 (3)

Geometric parameters (Å, °)

Cr1—O11.7986 (7)C9—H90.930
Cr1—N32.1206 (18)C10—C111.378 (4)
Cr1—N22.1238 (18)C10—H100.930
Cr1—N42.2370 (19)C11—C121.370 (3)
Cr1—N12.2814 (19)C11—H110.930
Cr1—Cl12.3070 (9)C12—N11.351 (3)
O1—Cr1i1.7986 (7)C12—H120.930
C1—N31.341 (3)C13—N41.482 (3)
C1—C21.369 (3)C13—C141.516 (3)
C1—H10.930C13—H13A0.970
C2—C31.386 (4)C13—H13B0.970
C2—H20.930C14—N21.345 (3)
C3—C41.376 (4)C14—C151.383 (3)
C3—H30.930C15—C161.384 (4)
C4—C51.382 (3)C15—H150.930
C4—H40.930C16—C171.371 (4)
C5—N31.352 (3)C16—H160.930
C5—C61.506 (3)C17—C181.369 (4)
C6—N41.479 (3)C17—H170.930
C6—H6A0.970C18—N21.351 (3)
C6—H6B0.970C18—H180.930
C7—N41.483 (3)F1—P11.5939 (17)
C7—C81.499 (3)F2—P11.5803 (18)
C7—H7A0.970F3—P11.582 (2)
C7—H7B0.970F4—P11.5859 (18)
C8—N11.342 (3)F5—P11.5804 (18)
C8—C91.379 (3)F6—P11.6129 (17)
C9—C101.380 (4)
O1—Cr1—N391.01 (5)N1—C12—H12118.5
O1—Cr1—N292.46 (5)C11—C12—H12118.5
N3—Cr1—N2154.67 (7)N4—C13—C14110.48 (16)
O1—Cr1—N491.36 (6)N4—C13—H13A109.6
N3—Cr1—N478.03 (7)C14—C13—H13A109.6
N2—Cr1—N476.81 (7)N4—C13—H13B109.6
O1—Cr1—N1166.58 (5)C14—C13—H13B109.6
N3—Cr1—N181.87 (7)H13A—C13—H13B108.1
N2—Cr1—N189.30 (7)N2—C14—C15120.7 (2)
N4—Cr1—N176.09 (7)N2—C14—C13116.67 (18)
O1—Cr1—Cl1103.29 (5)C15—C14—C13122.5 (2)
N3—Cr1—Cl1104.03 (5)C14—C15—C16118.4 (3)
N2—Cr1—Cl199.56 (6)C14—C15—H15120.8
N4—Cr1—Cl1165.11 (5)C16—C15—H15120.8
N1—Cr1—Cl189.52 (6)C17—C16—C15120.8 (2)
N3—C1—C2122.1 (2)C17—C16—H16119.6
N3—C1—H1118.9C15—C16—H16119.6
C2—C1—H1119.0C16—C17—C18118.2 (3)
C3—C2—C1118.8 (2)C16—C17—H17120.9
C3—C2—H2120.6C18—C17—H17120.9
C1—C2—H2120.6N2—C18—C17121.8 (3)
C2—C3—C4119.4 (2)N2—C18—H18119.1
C2—C3—H3120.3C17—C18—H18119.1
C4—C3—H3120.3C12—N1—C8117.79 (18)
C3—C4—C5119.3 (2)C12—N1—Cr1126.02 (15)
C3—C4—H4120.4C8—N1—Cr1115.61 (13)
C5—C4—H4120.4C14—N2—C18120.1 (2)
N3—C5—C4120.95 (19)C14—N2—Cr1114.45 (14)
N3—C5—C6116.79 (18)C18—N2—Cr1124.62 (17)
C4—C5—C6122.07 (19)C1—N3—C5119.42 (18)
N4—C6—C5112.19 (16)C1—N3—Cr1125.22 (14)
N4—C6—H6A109.2C5—N3—Cr1115.07 (13)
C5—C6—H6A109.2C6—N4—C7112.30 (18)
N4—C6—H6B109.2C6—N4—C13112.63 (16)
C5—C6—H6B109.2C7—N4—C13109.74 (17)
H6A—C6—H6B107.9C6—N4—Cr1105.11 (12)
N4—C7—C8114.97 (17)C7—N4—Cr1112.78 (13)
N4—C7—H7A108.5C13—N4—Cr1103.96 (12)
C8—C7—H7A108.5Cr1—O1—Cr1i180.0
N4—C7—H7B108.5F5—P1—F390.59 (12)
C8—C7—H7B108.5F5—P1—F2178.06 (11)
H7A—C7—H7B107.5F3—P1—F290.59 (13)
N1—C8—C9122.2 (2)F5—P1—F490.15 (11)
N1—C8—C7117.57 (17)F3—P1—F491.62 (13)
C9—C8—C7120.13 (19)F2—P1—F491.35 (11)
C10—C9—C8119.3 (2)F5—P1—F189.58 (11)
C10—C9—H9120.4F3—P1—F1179.22 (11)
C8—C9—H9120.4F2—P1—F189.22 (11)
C11—C10—C9118.9 (2)F4—P1—F189.14 (11)
C11—C10—H10120.5F5—P1—F690.19 (10)
C9—C10—H10120.5F3—P1—F690.39 (12)
C10—C11—C12118.9 (2)F2—P1—F688.26 (10)
C10—C11—H11120.6F4—P1—F6177.95 (11)
C12—C11—H11120.6F1—P1—F688.85 (10)
N1—C12—C11122.9 (2)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2257).

References

  • Bruker (2001). SADABS, SAINT-Plus and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Butler, A. & Carrano, C. J. (1991). Chem. Rev.109, 61–105.
  • Chen, Q. & Zubieta, I. (1990). Inorg. Chem.29, 1456–1458.
  • Crans, D., Bunch, R. L. & Theisen, L. A. (1989). J. Am. Chem. Soc.111, 7597–7601.
  • Dey, K. J. (1974). Sci. Ind. Res.33, 76–97.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Tajika, Y., Tsuge, K. & Sasaki, Y. (2005). Dalton Trans. pp. 1438–1447. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography