PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m1.
Published online 2007 December 6. doi:  10.1107/S1600536807061673
PMCID: PMC2914885

{Tris[2-(imidazol-2-ylmethyl­imino)eth­yl]methyl­ammonium}iron(II) tris­(per­chlorate) dihydrate

Abstract

The title complex, [Fe(C19H27N10)](ClO4)3·2H2O, is a new polymorph of an iron(II) Schiff base complex of tris­(2-amino­ethyl)methyl­ammonium with imidazole-2-carboxaldehyde. The octa­hedral FeII atom is bound to three facial imidazole N atoms with average Fe—Nimidazole and Fe—Nimine bond distances of 1.963 (5) and 1.951 (5) Å, respectively. The central N atom of the tripodal ligand is outside the bonding distance at 3.92 Å. The crystal packing is stabilized by the hydrogen-bonding inter­actions between the two water mol­ecules (acceptor) and two of the three imidazole NH groups (donor). The third imidazole NH group (donor) forms a hydrogen bond to one of the three perchlorate counter-ions (acceptor).

Related literature

For the synthesis, see: Brewer et al. (2005 [triangle]). For related structures, see: Brewer et al. (2006 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-000m1-scheme1.jpg

Experimental

Crystal data

  • [Fe(C19H27N10)](ClO4)3·2H2O
  • M r = 785.74
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-000m1-efi1.jpg
  • a = 13.9630 (18) Å
  • b = 11.7810 (15) Å
  • c = 37.182 (5) Å
  • V = 6116.4 (14) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.84 mm−1
  • T = 173 K
  • 0.54 × 0.45 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.682, T max = 0.904
  • 65065 measured reflections
  • 8324 independent reflections
  • 6601 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.108
  • S = 1.04
  • 8324 reflections
  • 436 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.76 e Å−3
  • Δρmin = −0.62 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2000 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807061673/tk2214sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061673/tk2214Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB acknowleges the Laboratory for the Structure of Matter at the Naval Research Laboratory for access to their diffractometers.

supplementary crystallographic information

Comment

Iron(II) and iron(III) Schiff base complexes of tris(2-aminoethyl)amine (tren) with imidazole carboxaldehyde have displayed spin crossover behavior (Brewer et al., 2006). Further, it has been demonstrated that the distance between the Fe atom and the central tren-N atom, Nap, is an indicator of spin-state (Brewer et al., 2006). Shorter distances correlate with high spin and longer distances with low spin. Quarternization of Nap, as observed in the title complex, (I), results in an elongated Fe—Nap distance due to both the conformation of the Nap atom (inverted away from the Fe atom) and the repulsive forces between the positively charged atoms (Brewer et al., 2005). Recently, it was shown that (I), without the methyl group on Nap, could serve as a bidentate hydrogen bond donor to the perchlorate anion of potassium perchlorate using the adjacent imidazole-NH and imine-CH H atoms to give supramolecular complexes (Brewer et al., 2007). Since the present molecule possesses this same structural feature, the reaction of it with potassium perchlorate was investigated. The reaction did not yield the desired product but gave (I) as a polymorph (Brewer et al., 2007). The structure of the iron cation differs from the original report in that the three arms of the ligand are not identical. In addition, the hydrogen bonding interactions with coordinated water and perchlorate are significantly different. Investigation of these effects on the spin crossover process and reactivity of the complex will be aided by the structural characterization of this new polymorph. In view of the importance of the spin crossover phenomenom and supramolecular systems, the present paper reports the crystal structure of (I) (Fig. 1).

The octahedral iron(II) atom is bound to three facial imidazole-N atoms whose average Fe–N bond distances for the imidazole- and imine-N atoms are 1.963 (5)Å and 1.951 (5) Å, respectively. The central N atom of the tripodal ligand is outside the bonding distance at 3.92 Å. Crystal packing is stabilized by the hydrogen bonding interactions between the two water molecules (acceptor) and two of the three imidazole NH groups (donor). The third imidazole NH group (donor) hydrogen bonds to one of the three perchlorate counterions (acceptor) (Table 1 & Fig. 2).

Experimental

Complex (I) was synthesized as previously described (Brewer et al., 2005) and was recrystallized from methanol solution in the presence of equimolal potassium perchlorate. The resulting crystals were analyzed by X-ray diffraction.

Refinement

The positional parameters of the water-bound H atoms were refined with Uiso(H) = 1.17–1.49Ueq(C,N); see Table 1 for distances. The remaining H atoms were included in the riding model approximation with N—H = 0.88Å and C—H = 0.95 to 0.99 Å, and with Uiso(H) = 1.17–1.49Ueq(C,N).

Figures

Fig. 1.
Molecular structure of the cation in (I), showing atom labeling and 50% probability displacement ellipsoids.
Fig. 2.
Partial packing diagram for (I), viewed down the b axis. Dashed lines indicate C–H···O (water & perchlorate) hydrogen bonds.

Crystal data

[Fe(C19H27N10)](ClO4)3·2H2OF000 = 3232
Mr = 785.74Dx = 1.707 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9963 reflections
a = 13.9630 (18) Åθ = 2.2–28.9º
b = 11.7810 (15) ŵ = 0.84 mm1
c = 37.182 (5) ÅT = 173 K
V = 6116.4 (14) Å3Chunk, dark-red
Z = 80.54 × 0.45 × 0.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer8324 independent reflections
Radiation source: fine-focus sealed tube6601 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.054
T = 173 Kθmax = 29.3º
[var phi] and ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −19→19
Tmin = 0.682, Tmax = 0.904k = −16→13
65065 measured reflectionsl = −51→51

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108  w = 1/[σ2(Fo2) + (0.0471P)2 + 5.7069P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
8324 reflectionsΔρmax = 0.76 e Å3
436 parametersΔρmin = −0.62 e Å3
6 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe0.542493 (19)0.51159 (2)0.110991 (7)0.01627 (7)
Cl10.32256 (4)0.00301 (5)0.015096 (15)0.02982 (12)
Cl20.24581 (4)0.63667 (5)0.208500 (15)0.02861 (12)
Cl30.57715 (4)0.00513 (5)0.181644 (16)0.03151 (13)
O110.3162 (2)0.0909 (2)−0.01088 (7)0.0756 (8)
O120.23275 (13)−0.05400 (18)0.01888 (6)0.0489 (5)
O130.39474 (14)−0.07620 (18)0.00529 (6)0.0526 (5)
O140.34756 (14)0.05377 (19)0.04951 (5)0.0494 (5)
O210.23376 (18)0.51820 (17)0.21519 (7)0.0598 (6)
O220.19608 (18)0.6630 (2)0.17533 (6)0.0610 (6)
O230.34507 (13)0.66157 (19)0.20374 (6)0.0505 (5)
O240.20629 (13)0.70357 (17)0.23716 (5)0.0437 (5)
O310.50024 (19)−0.0216 (2)0.15709 (7)0.0687 (7)
O320.61507 (15)−0.10022 (17)0.19422 (8)0.0617 (6)
O330.65127 (16)0.06867 (16)0.16416 (7)0.0570 (6)
O340.53883 (17)0.06912 (18)0.21060 (6)0.0576 (6)
O1W0.96601 (19)0.4969 (3)0.08139 (9)0.1023 (13)
H1W10.983 (4)0.562 (3)0.0904 (16)0.153*
H1W21.003 (4)0.489 (5)0.0650 (12)0.153*
O2W0.28606 (16)0.98531 (17)0.12333 (6)0.0461 (5)
H2W10.287 (3)1.024 (3)0.1051 (6)0.069*
H2W20.304 (3)1.029 (3)0.1392 (7)0.069*
N0.56728 (13)0.38916 (15)0.20854 (4)0.0215 (3)
N1A0.54566 (12)0.61049 (14)0.15322 (4)0.0190 (3)
N2A0.44316 (12)0.61938 (14)0.09684 (5)0.0199 (3)
N3A0.36892 (13)0.78081 (16)0.10830 (5)0.0269 (4)
H3AB0.35170.84400.11920.032*
N1B0.65376 (12)0.42147 (14)0.12542 (4)0.0193 (3)
N2B0.64328 (12)0.60169 (14)0.08733 (4)0.0198 (3)
N3B0.79608 (13)0.61176 (17)0.07239 (5)0.0288 (4)
H3BB0.85730.59470.07070.035*
N1C0.45107 (12)0.40472 (14)0.13101 (4)0.0192 (3)
N2C0.52259 (12)0.41612 (14)0.06825 (4)0.0198 (3)
N3C0.44957 (15)0.26827 (17)0.04444 (5)0.0304 (4)
H3CB0.41210.20860.04220.036*
C0.57789 (18)0.3404 (2)0.24639 (6)0.0301 (5)
H0A0.57690.25730.24520.045*
H0B0.52480.36690.26150.045*
H0C0.63880.36560.25680.045*
C1A0.56992 (16)0.51802 (17)0.21406 (5)0.0236 (4)
H1AA0.50370.54270.21950.028*
H1AB0.60840.53270.23590.028*
C2A0.60808 (15)0.59560 (17)0.18461 (5)0.0220 (4)
H2AA0.62050.67120.19520.026*
H2AB0.67020.56500.17620.026*
C3A0.49249 (15)0.69994 (17)0.15189 (5)0.0214 (4)
H3AA0.49210.75670.17010.026*
C4A0.43400 (14)0.70505 (17)0.12017 (5)0.0209 (4)
C5A0.33456 (16)0.7412 (2)0.07621 (6)0.0301 (5)
H5AA0.28750.77640.06150.036*
C6A0.38088 (15)0.64128 (19)0.06928 (6)0.0258 (4)
H6AA0.37140.59470.04870.031*
C1B0.65416 (15)0.34079 (18)0.18863 (6)0.0238 (4)
H1BA0.70860.39240.19340.029*
H1BB0.67000.26740.20010.029*
C2B0.65151 (15)0.32028 (17)0.14818 (5)0.0221 (4)
H2BA0.70680.27180.14170.026*
H2BB0.59260.27710.14250.026*
C3B0.73460 (15)0.45056 (18)0.11120 (5)0.0221 (4)
H3BA0.79220.40880.11440.027*
C4B0.72866 (14)0.55230 (18)0.09009 (5)0.0219 (4)
C5B0.65706 (16)0.69750 (18)0.06694 (6)0.0243 (4)
H5BA0.60890.75070.06050.029*
C6B0.75165 (17)0.7035 (2)0.05749 (6)0.0300 (5)
H6BA0.78090.76090.04330.036*
C1C0.47042 (15)0.34435 (18)0.19572 (6)0.0233 (4)
H1CA0.48110.26700.18610.028*
H1CB0.42910.33630.21720.028*
C2C0.41328 (14)0.40958 (18)0.16763 (5)0.0217 (4)
H2CA0.34700.37970.16740.026*
H2CB0.41000.49010.17510.026*
C3C0.41876 (15)0.32709 (18)0.10959 (6)0.0243 (4)
H3CA0.37230.27230.11650.029*
C4C0.46053 (15)0.33235 (18)0.07423 (6)0.0244 (4)
C5C0.55206 (15)0.40500 (19)0.03331 (6)0.0245 (4)
H5CA0.59640.45330.02140.029*
C6C0.50736 (18)0.3132 (2)0.01838 (6)0.0310 (5)
H6CA0.51500.2858−0.00550.037*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe0.01808 (13)0.01279 (13)0.01794 (13)−0.00035 (10)0.00077 (10)−0.00083 (10)
Cl10.0326 (3)0.0217 (3)0.0352 (3)0.0011 (2)−0.0064 (2)−0.0012 (2)
Cl20.0264 (2)0.0239 (3)0.0356 (3)0.00118 (19)0.0062 (2)−0.0030 (2)
Cl30.0313 (3)0.0234 (3)0.0399 (3)0.0000 (2)0.0070 (2)−0.0013 (2)
O110.118 (2)0.0463 (14)0.0629 (15)0.0105 (14)−0.0153 (15)0.0256 (12)
O120.0305 (9)0.0428 (11)0.0734 (14)−0.0057 (8)−0.0084 (9)−0.0190 (10)
O130.0387 (11)0.0425 (12)0.0765 (15)0.0111 (9)0.0060 (10)−0.0037 (10)
O140.0471 (11)0.0592 (13)0.0418 (11)−0.0193 (10)−0.0031 (9)−0.0152 (10)
O210.0761 (16)0.0259 (10)0.0775 (16)−0.0005 (10)0.0343 (13)0.0033 (10)
O220.0761 (16)0.0557 (14)0.0512 (12)0.0259 (12)−0.0215 (11)−0.0124 (10)
O230.0311 (9)0.0589 (13)0.0615 (13)−0.0122 (9)0.0157 (9)−0.0303 (10)
O240.0441 (10)0.0425 (11)0.0447 (10)0.0049 (9)0.0181 (8)−0.0097 (8)
O310.0615 (15)0.0787 (18)0.0660 (16)−0.0064 (13)−0.0182 (12)0.0026 (13)
O320.0452 (12)0.0272 (10)0.113 (2)0.0029 (9)−0.0029 (12)0.0131 (11)
O330.0592 (13)0.0294 (10)0.0824 (16)−0.0085 (9)0.0369 (12)−0.0004 (10)
O340.0787 (16)0.0403 (12)0.0538 (13)−0.0004 (11)0.0307 (11)−0.0083 (10)
O1W0.0430 (14)0.185 (4)0.079 (2)0.0426 (19)0.0211 (13)0.056 (2)
O2W0.0545 (12)0.0397 (11)0.0442 (11)0.0104 (10)−0.0002 (10)−0.0089 (9)
N0.0263 (8)0.0185 (8)0.0196 (8)−0.0007 (7)0.0005 (7)0.0020 (6)
N1A0.0221 (8)0.0159 (8)0.0190 (8)−0.0029 (6)0.0008 (6)0.0002 (6)
N2A0.0207 (8)0.0163 (8)0.0227 (8)0.0005 (6)0.0009 (6)0.0007 (6)
N3A0.0275 (9)0.0192 (9)0.0340 (10)0.0054 (7)0.0034 (8)0.0025 (7)
N1B0.0221 (8)0.0155 (8)0.0203 (8)0.0013 (6)0.0020 (6)−0.0021 (6)
N2B0.0230 (8)0.0168 (8)0.0195 (8)−0.0023 (6)0.0008 (6)−0.0013 (6)
N3B0.0237 (9)0.0324 (10)0.0304 (9)−0.0048 (8)0.0048 (7)0.0049 (8)
N1C0.0198 (8)0.0161 (8)0.0218 (8)−0.0002 (6)0.0013 (6)0.0000 (6)
N2C0.0227 (8)0.0158 (8)0.0209 (8)0.0024 (6)0.0001 (6)−0.0013 (6)
N3C0.0373 (10)0.0250 (10)0.0288 (9)−0.0055 (8)−0.0040 (8)−0.0109 (8)
C0.0424 (13)0.0268 (11)0.0212 (10)−0.0012 (10)−0.0011 (9)0.0066 (8)
C1A0.0323 (10)0.0193 (10)0.0193 (9)−0.0004 (8)−0.0019 (8)−0.0014 (7)
C2A0.0267 (10)0.0177 (9)0.0217 (9)−0.0037 (8)−0.0044 (8)−0.0026 (7)
C3A0.0268 (10)0.0150 (9)0.0224 (9)−0.0010 (7)0.0047 (8)−0.0023 (7)
C4A0.0212 (9)0.0170 (9)0.0243 (10)0.0005 (7)0.0040 (7)0.0015 (7)
C5A0.0277 (11)0.0297 (12)0.0329 (12)0.0038 (9)−0.0022 (9)0.0069 (9)
C6A0.0246 (10)0.0276 (11)0.0251 (10)−0.0010 (8)−0.0022 (8)0.0025 (8)
C1B0.0246 (10)0.0214 (10)0.0254 (10)0.0031 (8)−0.0014 (8)0.0038 (8)
C2B0.0254 (10)0.0163 (9)0.0245 (10)0.0025 (8)0.0021 (8)0.0021 (7)
C3B0.0213 (9)0.0220 (10)0.0231 (9)0.0014 (8)0.0009 (8)−0.0022 (8)
C4B0.0218 (9)0.0231 (10)0.0209 (9)−0.0026 (8)0.0033 (7)−0.0012 (8)
C5B0.0301 (10)0.0191 (10)0.0236 (10)−0.0033 (8)−0.0012 (8)0.0022 (8)
C6B0.0344 (12)0.0275 (12)0.0279 (10)−0.0087 (9)0.0032 (9)0.0049 (9)
C1C0.0250 (10)0.0211 (10)0.0238 (10)−0.0045 (8)0.0026 (8)0.0025 (8)
C2C0.0199 (9)0.0213 (10)0.0241 (10)−0.0008 (8)0.0039 (8)−0.0003 (8)
C3C0.0240 (10)0.0195 (10)0.0293 (10)−0.0046 (8)0.0004 (8)−0.0019 (8)
C4C0.0273 (10)0.0197 (10)0.0261 (10)−0.0011 (8)−0.0039 (8)−0.0056 (8)
C5C0.0292 (10)0.0229 (10)0.0213 (9)0.0046 (8)−0.0007 (8)−0.0019 (8)
C6C0.0384 (12)0.0309 (12)0.0236 (10)0.0044 (10)−0.0027 (9)−0.0080 (9)

Geometric parameters (Å, °)

Fe—N1C1.9414 (17)N1C—C3C1.294 (3)
Fe—N2A1.9528 (17)N1C—C2C1.461 (3)
Fe—N1A1.9559 (17)N2C—C4C1.332 (3)
Fe—N1B1.9567 (17)N2C—C5C1.369 (3)
Fe—N2C1.9665 (17)N3C—C4C1.349 (3)
Fe—N2B1.9701 (17)N3C—C6C1.368 (3)
Cl1—O111.418 (2)N3C—H3CB0.8800
Cl1—O131.421 (2)C—H0A0.9800
Cl1—O121.4295 (19)C—H0B0.9800
Cl1—O141.4548 (19)C—H0C0.9800
Cl2—O231.4277 (18)C1A—C2A1.523 (3)
Cl2—O211.428 (2)C1A—H1AA0.9900
Cl2—O241.4357 (18)C1A—H1AB0.9900
Cl2—O221.449 (2)C2A—H2AA0.9900
Cl3—O341.419 (2)C2A—H2AB0.9900
Cl3—O321.428 (2)C3A—C4A1.436 (3)
Cl3—O331.4330 (19)C3A—H3AA0.9500
Cl3—O311.444 (2)C5A—C6A1.368 (3)
O1W—H1W10.866 (19)C5A—H5AA0.9500
O1W—H1W20.807 (19)C6A—H6AA0.9500
O2W—H2W10.820 (17)C1B—C2B1.524 (3)
O2W—H2W20.821 (18)C1B—H1BA0.9900
N—C1.527 (3)C1B—H1BB0.9900
N—C1C1.528 (3)C2B—H2BA0.9900
N—C1B1.531 (3)C2B—H2BB0.9900
N—C1A1.532 (3)C3B—C4B1.435 (3)
N1A—C3A1.290 (3)C3B—H3BA0.9500
N1A—C2A1.467 (2)C5B—C6B1.369 (3)
N2A—C4A1.337 (3)C5B—H5BA0.9500
N2A—C6A1.368 (3)C6B—H6BA0.9500
N3A—C4A1.348 (3)C1C—C2C1.523 (3)
N3A—C5A1.368 (3)C1C—H1CA0.9900
N3A—H3AB0.8800C1C—H1CB0.9900
N1B—C3B1.293 (3)C2C—H2CA0.9900
N1B—C2B1.462 (3)C2C—H2CB0.9900
N2B—C4B1.330 (3)C3C—C4C1.440 (3)
N2B—C5B1.373 (3)C3C—H3CA0.9500
N3B—C4B1.345 (3)C5C—C6C1.367 (3)
N3B—C6B1.364 (3)C5C—H5CA0.9500
N3B—H3BB0.8800C6C—H6CA0.9500
N1C—Fe—N2A93.33 (7)H0B—C—H0C109.5
N1C—Fe—N1A95.36 (7)C2A—C1A—N120.44 (17)
N2A—Fe—N1A81.09 (7)C2A—C1A—H1AA107.2
N1C—Fe—N1B93.73 (7)N—C1A—H1AA107.2
N2A—Fe—N1B172.17 (7)C2A—C1A—H1AB107.2
N1A—Fe—N1B94.88 (7)N—C1A—H1AB107.2
N1C—Fe—N2C81.14 (7)H1AA—C1A—H1AB106.8
N2A—Fe—N2C93.08 (7)N1A—C2A—C1A115.85 (17)
N1A—Fe—N2C173.05 (7)N1A—C2A—H2AA108.3
N1B—Fe—N2C91.34 (7)C1A—C2A—H2AA108.3
N1C—Fe—N2B172.05 (7)N1A—C2A—H2AB108.3
N2A—Fe—N2B92.10 (7)C1A—C2A—H2AB108.3
N1A—Fe—N2B91.22 (7)H2AA—C2A—H2AB107.4
N1B—Fe—N2B81.23 (7)N1A—C3A—C4A113.15 (18)
N2C—Fe—N2B92.77 (7)N1A—C3A—H3AA123.4
O11—Cl1—O13110.43 (16)C4A—C3A—H3AA123.4
O11—Cl1—O12110.79 (16)N2A—C4A—N3A110.61 (18)
O13—Cl1—O12109.80 (12)N2A—C4A—C3A116.54 (18)
O11—Cl1—O14108.29 (15)N3A—C4A—C3A132.85 (19)
O13—Cl1—O14108.99 (13)C6A—C5A—N3A106.98 (19)
O12—Cl1—O14108.48 (12)C6A—C5A—H5AA126.5
O23—Cl2—O21109.69 (14)N3A—C5A—H5AA126.5
O23—Cl2—O24110.63 (11)C5A—C6A—N2A108.8 (2)
O21—Cl2—O24111.22 (13)C5A—C6A—H6AA125.6
O23—Cl2—O22108.41 (15)N2A—C6A—H6AA125.6
O21—Cl2—O22107.53 (15)C2B—C1B—N121.13 (17)
O24—Cl2—O22109.27 (13)C2B—C1B—H1BA107.0
O34—Cl3—O32110.68 (15)N—C1B—H1BA107.0
O34—Cl3—O33109.81 (13)C2B—C1B—H1BB107.0
O32—Cl3—O33109.56 (13)N—C1B—H1BB107.0
O34—Cl3—O31108.37 (16)H1BA—C1B—H1BB106.8
O32—Cl3—O31107.02 (15)N1B—C2B—C1B116.20 (17)
O33—Cl3—O31111.37 (16)N1B—C2B—H2BA108.2
H1W1—O1W—H1W2103 (3)C1B—C2B—H2BA108.2
H2W1—O2W—H2W2104 (2)N1B—C2B—H2BB108.2
C—N—C1C104.07 (16)C1B—C2B—H2BB108.2
C—N—C1B103.21 (16)H2BA—C2B—H2BB107.4
C1C—N—C1B114.95 (16)N1B—C3B—C4B113.24 (18)
C—N—C1A104.30 (16)N1B—C3B—H3BA123.4
C1C—N—C1A113.92 (16)C4B—C3B—H3BA123.4
C1B—N—C1A114.49 (16)N2B—C4B—N3B111.19 (19)
C3A—N1A—C2A118.04 (17)N2B—C4B—C3B117.34 (18)
C3A—N1A—Fe116.28 (14)N3B—C4B—C3B131.4 (2)
C2A—N1A—Fe125.51 (13)C6B—C5B—N2B108.64 (19)
C4A—N2A—C6A106.42 (17)C6B—C5B—H5BA125.7
C4A—N2A—Fe112.58 (14)N2B—C5B—H5BA125.7
C6A—N2A—Fe140.88 (15)N3B—C6B—C5B107.06 (19)
C4A—N3A—C5A107.23 (18)N3B—C6B—H6BA126.5
C4A—N3A—H3AB126.4C5B—C6B—H6BA126.5
C5A—N3A—H3AB126.4C2C—C1C—N120.22 (17)
C3B—N1B—C2B118.14 (17)C2C—C1C—H1CA107.3
C3B—N1B—Fe115.93 (14)N—C1C—H1CA107.3
C2B—N1B—Fe125.72 (13)C2C—C1C—H1CB107.3
C4B—N2B—C5B106.05 (17)N—C1C—H1CB107.3
C4B—N2B—Fe111.71 (13)H1CA—C1C—H1CB106.9
C5B—N2B—Fe142.13 (15)N1C—C2C—C1C115.48 (17)
C4B—N3B—C6B107.04 (19)N1C—C2C—H2CA108.4
C4B—N3B—H3BB126.5C1C—C2C—H2CA108.4
C6B—N3B—H3BB126.5N1C—C2C—H2CB108.4
C3C—N1C—C2C118.37 (17)C1C—C2C—H2CB108.4
C3C—N1C—Fe116.85 (14)H2CA—C2C—H2CB107.5
C2C—N1C—Fe124.70 (13)N1C—C3C—C4C112.98 (18)
C4C—N2C—C5C106.43 (17)N1C—C3C—H3CA123.5
C4C—N2C—Fe112.39 (14)C4C—C3C—H3CA123.5
C5C—N2C—Fe141.17 (15)N2C—C4C—N3C110.58 (19)
C4C—N3C—C6C107.37 (19)N2C—C4C—C3C116.60 (18)
C4C—N3C—H3CB126.3N3C—C4C—C3C132.8 (2)
C6C—N3C—H3CB126.3C6C—C5C—N2C108.9 (2)
N—C—H0A109.5C6C—C5C—H5CA125.5
N—C—H0B109.5N2C—C5C—H5CA125.5
H0A—C—H0B109.5C5C—C6C—N3C106.71 (19)
N—C—H0C109.5C5C—C6C—H6CA126.6
H0A—C—H0C109.5N3C—C6C—H6CA126.6
N1C—Fe—N1A—C3A−98.03 (15)Fe—N1A—C3A—C4A4.9 (2)
N2A—Fe—N1A—C3A−5.49 (15)C6A—N2A—C4A—N3A−0.5 (2)
N1B—Fe—N1A—C3A167.75 (15)Fe—N2A—C4A—N3A176.30 (13)
N2B—Fe—N1A—C3A86.44 (15)C6A—N2A—C4A—C3A179.43 (18)
N2A—Fe—N1A—C2A179.28 (16)Fe—N2A—C4A—C3A−3.7 (2)
N1B—Fe—N1A—C2A−7.49 (16)C5A—N3A—C4A—N2A0.6 (2)
N2B—Fe—N1A—C2A−88.79 (16)C5A—N3A—C4A—C3A−179.4 (2)
N1C—Fe—N2A—C4A99.71 (14)N1A—C3A—C4A—N2A−0.7 (3)
N1A—Fe—N2A—C4A4.80 (14)N1A—C3A—C4A—N3A179.3 (2)
N2C—Fe—N2A—C4A−178.99 (14)C4A—N3A—C5A—C6A−0.4 (2)
N2B—Fe—N2A—C4A−86.10 (14)N3A—C5A—C6A—N2A0.0 (2)
N1C—Fe—N2A—C6A−85.1 (2)C4A—N2A—C6A—C5A0.3 (2)
N1A—Fe—N2A—C6A180.0 (2)Fe—N2A—C6A—C5A−175.06 (17)
N2C—Fe—N2A—C6A−3.8 (2)C—N—C1B—C2B151.74 (19)
N2B—Fe—N2A—C6A89.1 (2)C1C—N—C1B—C2B39.1 (3)
N1C—Fe—N1B—C3B167.02 (15)C1A—N—C1B—C2B−95.6 (2)
N1A—Fe—N1B—C3B−97.27 (15)C3B—N1B—C2B—C1B99.6 (2)
N2C—Fe—N1B—C3B85.81 (15)Fe—N1B—C2B—C1B−85.8 (2)
N2B—Fe—N1B—C3B−6.79 (15)N—C1B—C2B—N1B72.2 (2)
N1C—Fe—N1B—C2B−7.71 (16)C2B—N1B—C3B—C4B−178.72 (17)
N1A—Fe—N1B—C2B88.00 (16)Fe—N1B—C3B—C4B6.1 (2)
N2C—Fe—N1B—C2B−88.92 (16)C5B—N2B—C4B—N3B−0.2 (2)
N2B—Fe—N1B—C2B178.48 (16)Fe—N2B—C4B—N3B177.05 (14)
N2A—Fe—N2B—C4B−178.30 (14)C5B—N2B—C4B—C3B178.36 (18)
N1A—Fe—N2B—C4B100.57 (14)Fe—N2B—C4B—C3B−4.4 (2)
N1B—Fe—N2B—C4B5.82 (14)C6B—N3B—C4B—N2B−0.1 (2)
N2C—Fe—N2B—C4B−85.11 (14)C6B—N3B—C4B—C3B−178.4 (2)
N2A—Fe—N2B—C5B−2.7 (2)N1B—C3B—C4B—N2B−1.0 (3)
N1A—Fe—N2B—C5B−83.8 (2)N1B—C3B—C4B—N3B177.2 (2)
N1B—Fe—N2B—C5B−178.5 (2)C4B—N2B—C5B—C6B0.4 (2)
N2C—Fe—N2B—C5B90.5 (2)Fe—N2B—C5B—C6B−175.37 (17)
N2A—Fe—N1C—C3C91.28 (16)C4B—N3B—C6B—C5B0.4 (3)
N1A—Fe—N1C—C3C172.62 (16)N2B—C5B—C6B—N3B−0.5 (3)
N1B—Fe—N1C—C3C−92.11 (16)C—N—C1C—C2C153.57 (18)
N2C—Fe—N1C—C3C−1.33 (15)C1B—N—C1C—C2C−94.3 (2)
N2A—Fe—N1C—C2C−85.53 (16)C1A—N—C1C—C2C40.6 (2)
N1A—Fe—N1C—C2C−4.18 (16)C3C—N1C—C2C—C1C93.2 (2)
N1B—Fe—N1C—C2C91.09 (16)Fe—N1C—C2C—C1C−90.1 (2)
N2C—Fe—N1C—C2C−178.13 (16)N—C1C—C2C—N1C72.7 (2)
N1C—Fe—N2C—C4C0.15 (14)C2C—N1C—C3C—C4C179.14 (18)
N2A—Fe—N2C—C4C−92.75 (15)Fe—N1C—C3C—C4C2.1 (2)
N1B—Fe—N2C—C4C93.72 (15)C5C—N2C—C4C—N3C0.1 (2)
N2B—Fe—N2C—C4C175.00 (15)Fe—N2C—C4C—N3C−179.40 (14)
N2A—Fe—N2C—C5C88.0 (2)C5C—N2C—C4C—C3C−179.55 (18)
N1B—Fe—N2C—C5C−85.6 (2)Fe—N2C—C4C—C3C0.9 (2)
N2B—Fe—N2C—C5C−4.3 (2)C6C—N3C—C4C—N2C0.1 (3)
C—N—C1A—C2A150.83 (19)C6C—N3C—C4C—C3C179.7 (2)
C1C—N—C1A—C2A−96.4 (2)N1C—C3C—C4C—N2C−2.0 (3)
C1B—N—C1A—C2A38.8 (3)N1C—C3C—C4C—N3C178.4 (2)
C3A—N1A—C2A—C1A98.1 (2)C4C—N2C—C5C—C6C−0.3 (2)
Fe—N1A—C2A—C1A−86.8 (2)Fe—N2C—C5C—C6C178.98 (18)
N—C1A—C2A—N1A73.3 (2)N2C—C5C—C6C—N3C0.4 (3)
C2A—N1A—C3A—C4A−179.54 (17)C4C—N3C—C6C—C5C−0.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W2···O14i0.807 (19)2.29 (4)2.938 (3)138 (5)
O2W—H2W1···O14ii0.820 (17)2.26 (2)2.987 (3)148 (4)
O2W—H2W2···O22iii0.821 (18)2.07 (2)2.861 (3)160 (4)
N3A—H3AB···O2W0.881.912.730 (3)155
N3B—H3BB···O1W0.881.952.752 (3)152
N3C—H3CB···O140.882.052.907 (3)163

Symmetry codes: (i) −x+3/2, y+1/2, z; (ii) x, y+1, z; (iii) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2214).

References

  • Brewer, C., Brewer, G., Patil, G., Sun, Y., Viragh, C. & Butcher, R. J. (2005). Inorg. Chim. Acta.358, 3441–3448.
  • Brewer, G., Butcher, R. J., Viragh, C. & White, G. (2007). Dalton Trans pp. 4132–4142.
  • Brewer, G., Olida, M. J., Schmiedekamp, A. M., Viragh, C. & Zavalij, P. (2006). Dalton Trans. pp. 5617–5629. [PubMed]
  • Bruker (2000). SMART and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2006). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography