PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): i4.
Published online 2007 December 12. doi:  10.1107/S1600536807066111
PMCID: PMC2914882

Octa­deca­bromidobis(dicarbido)deca­dysprosium, [Dy10Br18(C2)2]

Abstract

Single crystals of [Dy10Br18(C2)2] were obtained during the reaction of DyBr3 with dysprosium metal and graphite in a sealed tantalum container. In the crystal structure, the Dy atoms form dimers of edge-sharing octa­hedra, each encapsulating a C2 unit. The metal atoms are surrounded by Br atoms above the cluster edges and vertices, respectively. The dimers are connected to each other by Br atoms, leading to a three-dimensional network. [Dy10Br18(C2)2] is isotypic with its iodido analogue [Dy10I18(C2)2].

Related literature

Details of ternary and quaternary halides of the rare earth elements have been compiled by Meyer & Wickleder (2000 [triangle]). Bromides with the formula [RE10Br18(C2)2], where RE is Gd, Tb or Er, have been studied by Liess (1996 [triangle]), Mattausch et al. (2002 [triangle]) and Uhrlandt et al. (1994 [triangle]). Recently, the first dysprosium compound belonging to this structural family, [Dy10I18(C2)2], was reported by Mattausch et al. (2007 [triangle]). [Dy10Br18(C2)2] is obtained by reduction of DyBr3 with dysprosium and graphite. For the synthesis of the starting material DyBr3, see Meyer et al. (1987 [triangle]).

Experimental

Crystal data

  • [Dy10Br18(C2)2]
  • M r = 3111.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-000i4-efi1.jpg
  • a = 9.7399 (12) Å
  • b = 16.3398 (15) Å
  • c = 13.2469 (19) Å
  • β = 120.869 (9)°
  • V = 1809.6 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 40.24 mm−1
  • T = 293 (2) K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Stoe IPDSII diffractometer
  • Absorption correction: numerical [X-RED (Stoe & Cie, 2001 [triangle]) and X-SHAPE (Stoe & Cie, 1999 [triangle])] T min = 0.015, T max = 0.063
  • 23768 measured reflections
  • 3935 independent reflections
  • 2989 reflections with I > 2σ(I)
  • R int = 0.096

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.079
  • S = 1.01
  • 3935 reflections
  • 136 parameters
  • Δρmax = 2.44 e Å−3
  • Δρmin = −1.75 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2005 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global_, I. DOI: 10.1107/S1600536807066111/wm2169sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066111/wm2169Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Deutsche Forschungs­gemeinschaft (DFG) (SFB 608 ‘Complex transition metal compounds with spin and charge degrees of freedom and disorder’).

supplementary crystallographic information

Comment

A number of ternary and quaternary halides of the general formulae [{RE10(C2)2}Xn] with RE = Gd, Tb, Er, Y; X = Cl, Br, I; n = 17–19 and Ax[{RE10(C2)2}Xn] with A = K, Rb, Cs; x = 1–3; n = 18–21 have been observed and were compiled by Meyer and Wickleder (2000). Among these halides, three bromides with the formula [{RE10(C2)2}Br18], where RE is Gd, Tb, and Er, are known and were structurally studied by Lie\&s (1996), Mattausch et al. (2002) and Uhrlandt et al. (1994).

The crystal structure of the title compound is isotypic with the iodide analogue [{Dy10(C2)2}I18] studied recently by Mattausch et al. (2007). As many reduced rare earth halides, the cluster compound [{Dy10(C2)2}Br18] consists of an octahedral arrangement of dysprosium atoms stabilized by an interstitial C2 dumbbell. The dysprosium octahedra are connected via common edges leading to the formation of dimers. The cluster cores are surrounded by bromine atoms above the cluster edges and vertices, respectively (Fig. 1). Some of the bromine atoms belong to a single dimeric unit while others connect neighbouring dimers, thus leading to a three-dimensional network (Fig. 2). Due to the slight elongation of the dysprosium octahedra established roughly parallel to the axis of the C2 units, the Dy—Dy distances range from 3.1832 (11) to 4.0369 (9) Å. The Dy—Br distances in [{Dy10(C2)2}Br18] vary between 2.7157 (15) and 3.3231 (12) Å with the distances to the edge-bridging bromine atoms that are placed between two condensed octahedra significantly larger than those to the other ligands. The C—C bond length is 1.437 (13) Å.

Experimental

Black parallelepipedic crystals of [{Dy10(C2)2}Br18] were obtained by the reaction of DyBr3 (150 mg) with dysprosium powder (85 mg, Chempur, 99,9%) and graphite (8 mg, Merck, p.a.) in a tantalum container at 1273 K. DyBr3 had been synthesized previously according to the ammonium bromide route (Meyer et al., 1987), followed by sublimation in high vacuum for purification. Due to air and moisture sensitivity of both reagents and products, all handlings were carried out in an argon-filled glove box (M. Braun, Garching, Germany).

Refinement

The highest peak in the final difference Fourier map is 0.99 Å from atom Dy4 and the deepest hole is 0.88 Å from the same atom.

Figures

Fig. 1.
: The dimeric unit in [{Dy10(C2)2}Br18] with displacement ellipsoids drawn at the 90% probability level [Symmetry codes: (i) 1 - x, 1/2 + y, 1.5 - z; (ii) x, 0.5 - y, 1/2 + z].
Fig. 2.
: View of the crystal structure of [{Dy10(C2)2}Br18] emphasizing the connection between the dimers via bromine atoms.

Crystal data

[Dy10Br18(C2)2]F000 = 2628
Mr = 3111.42Dx = 5.710 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14525 reflections
a = 9.7399 (12) Åθ = 2.1–27.1º
b = 16.3398 (15) ŵ = 40.24 mm1
c = 13.2469 (19) ÅT = 293 (2) K
β = 120.869 (9)ºParallelepiped, black
V = 1809.6 (4) Å30.20 × 0.20 × 0.20 mm
Z = 2

Data collection

Stoe IPDSII diffractometer3935 independent reflections
Radiation source: fine-focus sealed tube2989 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.096
T = 293(2) Kθmax = 27.3º
[var phi] scansθmin = 2.2º
Absorption correction: numerical[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]h = −12→12
Tmin = 0.015, Tmax = 0.063k = −20→20
23768 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0351P)2] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max = 0.001
wR(F2) = 0.079Δρmax = 2.44 e Å3
S = 1.01Δρmin = −1.75 e Å3
3935 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
136 parametersExtinction coefficient: 0.00038 (3)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Dy10.72140 (7)−0.18631 (3)0.55464 (5)0.01642 (12)
Dy20.86572 (6)−0.05763 (3)0.81405 (4)0.01581 (12)
Dy30.49120 (6)0.16312 (3)0.27712 (5)0.01646 (13)
Dy40.66436 (6)0.04537 (3)0.53869 (5)0.01672 (12)
Dy50.49942 (6)−0.05623 (3)0.23673 (5)0.01640 (12)
Br10.79002 (15)0.17718 (7)0.46836 (11)0.0267 (3)
Br20.18295 (15)−0.05866 (7)0.03920 (11)0.0261 (3)
Br30.81121 (14)−0.06564 (6)0.44345 (10)0.0199 (2)
Br40.19236 (15)0.18349 (7)0.05984 (11)0.0270 (3)
Br50.60176 (17)−0.19122 (6)0.14246 (12)0.0282 (3)
Br60.59583 (16)0.06929 (7)0.14910 (12)0.0273 (3)
Br71.01722 (16)−0.18152 (7)0.75532 (12)0.0274 (3)
Br80.97720 (15)0.06689 (7)0.73923 (11)0.0265 (3)
Br90.58632 (14)0.19733 (6)0.66855 (10)0.0198 (2)
C10.6314 (13)−0.0891 (5)0.6212 (9)0.0118 (18)*
C20.4262 (13)0.0309 (6)0.3277 (9)0.0144 (19)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Dy10.0185 (3)0.0131 (2)0.0193 (3)0.00139 (17)0.0109 (2)−0.00086 (17)
Dy20.0133 (3)0.0157 (2)0.0161 (3)−0.00058 (17)0.0058 (2)0.00070 (17)
Dy30.0170 (3)0.0136 (2)0.0190 (3)−0.00068 (17)0.0094 (2)0.00148 (17)
Dy40.0136 (3)0.0162 (2)0.0177 (3)−0.00185 (17)0.0061 (2)0.00218 (17)
Dy50.0162 (3)0.0138 (2)0.0191 (3)0.00202 (17)0.0089 (2)−0.00146 (17)
Br10.0196 (6)0.0273 (5)0.0261 (6)−0.0087 (4)0.0066 (5)0.0045 (4)
Br20.0170 (6)0.0321 (6)0.0209 (6)0.0031 (4)0.0037 (5)−0.0070 (5)
Br30.0161 (6)0.0213 (5)0.0235 (6)0.0005 (4)0.0110 (5)0.0020 (4)
Br40.0214 (7)0.0287 (5)0.0247 (6)−0.0059 (4)0.0073 (5)0.0103 (4)
Br50.0435 (8)0.0148 (5)0.0400 (7)0.0018 (4)0.0313 (7)−0.0017 (4)
Br60.0361 (7)0.0225 (5)0.0354 (7)−0.0012 (5)0.0271 (6)0.0002 (5)
Br70.0191 (6)0.0298 (5)0.0281 (7)0.0066 (4)0.0083 (5)−0.0031 (4)
Br80.0182 (6)0.0291 (5)0.0248 (6)−0.0074 (4)0.0057 (5)0.0056 (4)
Br90.0189 (6)0.0163 (4)0.0235 (6)−0.0005 (4)0.0104 (5)−0.0009 (4)

Geometric parameters (Å, °)

Dy1—C12.205 (9)Dy4—C22.568 (11)
Dy1—Br72.7413 (15)Dy4—C1ii2.652 (10)
Dy1—Br5i2.8473 (12)Dy4—C2ii2.659 (10)
Dy1—Br32.8539 (12)Dy4—Br82.8564 (14)
Dy1—Br9ii2.9434 (14)Dy4—Br12.8591 (12)
Dy1—Br4iii2.9730 (12)Dy4—Br32.9630 (12)
Dy1—Dy23.6399 (8)Dy4—Dy4ii3.1832 (11)
Dy1—Dy3ii3.7595 (9)Dy4—Br93.3231 (12)
Dy1—Dy43.8163 (7)Dy5—C22.207 (10)
Dy2—C12.453 (10)Dy5—Br62.7485 (12)
Dy2—C2ii2.515 (11)Dy5—Br22.8413 (14)
Dy2—Br82.7213 (12)Dy5—Br32.8655 (14)
Dy2—Br72.8388 (13)Dy5—Br9ii2.9432 (12)
Dy2—Br4ii2.8827 (12)Dy5—Br52.9488 (12)
Dy2—Br2ii2.9258 (13)Dy5—Dy2ii3.7560 (8)
Dy2—Br2iv2.9978 (14)Br2—Dy2ii2.9258 (13)
Dy2—Dy3ii3.4938 (8)Br2—Dy2vii2.9978 (14)
Dy2—Dy43.5558 (9)Br4—Dy2ii2.8827 (12)
Dy2—Dy5ii3.7560 (8)Br4—Dy1v2.9730 (12)
Dy3—C22.439 (9)Br5—Dy1viii2.8473 (12)
Dy3—C1ii2.520 (10)Br5—Dy3iii2.9340 (12)
Dy3—Br12.7157 (15)Br9—Dy5ii2.9432 (12)
Dy3—Br62.8354 (13)Br9—Dy1ii2.9434 (14)
Dy3—Br42.8759 (14)Br9—Dy3ix3.0812 (12)
Dy3—Br5v2.9340 (12)C1—C2ii1.437 (13)
Dy3—Br9vi3.0812 (12)C1—Dy3ii2.520 (10)
Dy3—Dy2ii3.4938 (8)C1—Dy4ii2.652 (10)
Dy3—Dy43.5434 (8)C2—C1ii1.437 (13)
Dy3—Dy53.6309 (7)C2—Dy2ii2.515 (11)
Dy3—Dy1ii3.7595 (8)C2—Dy4ii2.659 (10)
Dy4—C12.547 (9)
C1—Dy1—Br791.6 (3)C2—Dy4—C2ii105.0 (3)
C1—Dy1—Br5i90.7 (2)C1ii—Dy4—C2ii93.6 (3)
Br7—Dy1—Br5i94.05 (4)C1—Dy4—Br890.9 (2)
C1—Dy1—Br389.9 (2)C2—Dy4—Br8163.8 (2)
Br7—Dy1—Br391.88 (4)C1ii—Dy4—Br8155.9 (2)
Br5i—Dy1—Br3174.01 (4)C2ii—Dy4—Br889.9 (2)
C1—Dy1—Br9ii92.1 (3)C1—Dy4—Br1163.6 (2)
Br7—Dy1—Br9ii176.15 (4)C2—Dy4—Br190.8 (2)
Br5i—Dy1—Br9ii87.03 (4)C1ii—Dy4—Br190.5 (2)
Br3—Dy1—Br9ii87.00 (4)C2ii—Dy4—Br1156.1 (2)
C1—Dy1—Br4iii173.6 (3)Br8—Dy4—Br177.27 (4)
Br7—Dy1—Br4iii94.80 (4)C1—Dy4—Br381.3 (2)
Br5i—Dy1—Br4iii89.28 (4)C2—Dy4—Br381.0 (2)
Br3—Dy1—Br4iii89.40 (4)C1ii—Dy4—Br3112.9 (2)
Br9ii—Dy1—Br4iii81.51 (4)C2ii—Dy4—Br3113.2 (2)
C1—Dy1—Dy241.1 (3)Br8—Dy4—Br387.35 (4)
Br7—Dy1—Dy250.46 (3)Br1—Dy4—Br386.65 (4)
Br5i—Dy1—Dy293.50 (3)C1—Dy4—Dy4ii53.8 (2)
Br3—Dy1—Dy290.92 (3)C2—Dy4—Dy4ii53.8 (2)
Br9ii—Dy1—Dy2133.21 (3)C1ii—Dy4—Dy4ii50.8 (2)
Br4iii—Dy1—Dy2145.25 (3)C2ii—Dy4—Dy4ii51.2 (2)
C1—Dy1—Dy3ii40.3 (2)Br8—Dy4—Dy4ii140.68 (4)
Br7—Dy1—Dy3ii92.68 (3)Br1—Dy4—Dy4ii140.71 (4)
Br5i—Dy1—Dy3ii50.45 (2)Br3—Dy4—Dy4ii101.73 (3)
Br3—Dy1—Dy3ii130.11 (3)C1—Dy4—Br9108.0 (2)
Br9ii—Dy1—Dy3ii90.85 (3)C2—Dy4—Br9108.3 (2)
Br4iii—Dy1—Dy3ii139.48 (3)C1ii—Dy4—Br976.7 (2)
Dy2—Dy1—Dy3ii56.324 (16)C2ii—Dy4—Br976.3 (2)
C1—Dy1—Dy439.8 (2)Br8—Dy4—Br981.07 (4)
Br7—Dy1—Dy494.36 (3)Br1—Dy4—Br981.70 (4)
Br5i—Dy1—Dy4129.89 (3)Br3—Dy4—Br9165.10 (3)
Br3—Dy1—Dy450.25 (2)Dy4ii—Dy4—Br993.17 (3)
Br9ii—Dy1—Dy487.75 (2)C1—Dy4—Dy3141.9 (2)
Br4iii—Dy1—Dy4138.84 (3)C2—Dy4—Dy343.5 (2)
Dy2—Dy1—Dy456.906 (14)C1ii—Dy4—Dy345.2 (2)
Dy3ii—Dy1—Dy479.866 (14)C2ii—Dy4—Dy3138.7 (2)
C1—Dy2—C2ii33.6 (3)Br8—Dy4—Dy3126.02 (3)
C1—Dy2—Br896.3 (2)Br1—Dy4—Dy348.77 (3)
C2ii—Dy2—Br896.2 (2)Br3—Dy4—Dy390.43 (3)
C1—Dy2—Br784.4 (2)Dy4ii—Dy4—Dy392.44 (2)
C2ii—Dy2—Br7117.8 (2)Br9—Dy4—Dy388.85 (3)
Br8—Dy2—Br794.17 (4)C1—Dy4—Dy243.6 (2)
C1—Dy2—Br4ii95.7 (2)C2—Dy4—Dy2142.0 (2)
C2ii—Dy2—Br4ii94.2 (2)C1ii—Dy4—Dy2138.4 (2)
Br8—Dy2—Br4ii167.98 (4)C2ii—Dy4—Dy244.9 (2)
Br7—Dy2—Br4ii86.23 (4)Br8—Dy4—Dy248.74 (3)
C1—Dy2—Br2ii116.5 (2)Br1—Dy4—Dy2126.00 (3)
C2ii—Dy2—Br2ii82.9 (2)Br3—Dy4—Dy290.82 (3)
Br8—Dy2—Br2ii89.27 (4)Dy4ii—Dy4—Dy292.53 (2)
Br7—Dy2—Br2ii158.35 (4)Br9—Dy4—Dy288.56 (3)
Br4ii—Dy2—Br2ii86.07 (4)Dy3—Dy4—Dy2174.519 (19)
C1—Dy2—Br2iv165.5 (2)C1—Dy4—Dy133.6 (2)
C2ii—Dy2—Br2iv159.6 (2)C2—Dy4—Dy189.6 (2)
Br8—Dy2—Br2iv88.07 (4)C1ii—Dy4—Dy1112.27 (19)
Br7—Dy2—Br2iv81.56 (4)C2ii—Dy4—Dy165.6 (2)
Br4ii—Dy2—Br2iv80.09 (4)Br8—Dy4—Dy190.87 (3)
Br2ii—Dy2—Br2iv77.19 (4)Br1—Dy4—Dy1133.69 (3)
C1—Dy2—Dy3ii46.2 (2)Br3—Dy4—Dy147.77 (2)
C2ii—Dy2—Dy3ii44.3 (2)Dy4ii—Dy4—Dy169.484 (18)
Br8—Dy2—Dy3ii139.04 (3)Br9—Dy4—Dy1141.07 (3)
Br7—Dy2—Dy3ii96.80 (3)Dy3—Dy4—Dy1125.134 (19)
Br4ii—Dy2—Dy3ii52.56 (3)Dy2—Dy4—Dy159.047 (14)
Br2ii—Dy2—Dy3ii94.50 (3)C2—Dy5—Br691.4 (3)
Br2iv—Dy2—Dy3ii132.53 (3)C2—Dy5—Br290.6 (3)
C1—Dy2—Dy445.7 (2)Br6—Dy5—Br293.77 (4)
C2ii—Dy2—Dy448.3 (2)C2—Dy5—Br389.6 (3)
Br8—Dy2—Dy452.09 (3)Br6—Dy5—Br391.11 (4)
Br7—Dy2—Dy498.46 (3)Br2—Dy5—Br3175.10 (4)
Br4ii—Dy2—Dy4139.75 (3)C2—Dy5—Br9ii91.8 (3)
Br2ii—Dy2—Dy4100.49 (3)Br6—Dy5—Br9ii176.15 (4)
Br2iv—Dy2—Dy4140.15 (3)Br2—Dy5—Br9ii88.32 (4)
Dy3ii—Dy2—Dy487.228 (19)Br3—Dy5—Br9ii86.79 (3)
C1—Dy2—Dy136.2 (2)C2—Dy5—Br5171.1 (3)
C2ii—Dy2—Dy169.8 (2)Br6—Dy5—Br596.68 (4)
Br8—Dy2—Dy196.95 (3)Br2—Dy5—Br592.42 (4)
Br7—Dy2—Dy148.13 (3)Br3—Dy5—Br586.67 (4)
Br4ii—Dy2—Dy192.26 (3)Br9ii—Dy5—Br579.99 (3)
Br2ii—Dy2—Dy1152.46 (3)C2—Dy5—Dy341.0 (3)
Br2iv—Dy2—Dy1129.62 (3)Br6—Dy5—Dy350.49 (3)
Dy3ii—Dy2—Dy163.568 (16)Br2—Dy5—Dy393.10 (3)
Dy4—Dy2—Dy164.047 (17)Br3—Dy5—Dy390.27 (2)
C1—Dy2—Dy5ii68.1 (2)Br9ii—Dy5—Dy3132.68 (3)
C2ii—Dy2—Dy5ii34.5 (2)Br5—Dy5—Dy3146.99 (3)
Br8—Dy2—Dy5ii94.73 (3)C2—Dy5—Dy2ii40.2 (3)
Br7—Dy2—Dy5ii151.85 (3)Br6—Dy5—Dy2ii92.98 (3)
Br4ii—Dy2—Dy5ii90.45 (3)Br2—Dy5—Dy2ii50.35 (3)
Br2ii—Dy2—Dy5ii48.39 (3)Br3—Dy5—Dy2ii129.76 (3)
Br2iv—Dy2—Dy5ii125.37 (3)Br9ii—Dy5—Dy2ii90.84 (3)
Dy3ii—Dy2—Dy5ii59.980 (16)Br5—Dy5—Dy2ii142.13 (3)
Dy4—Dy2—Dy5ii66.960 (16)Dy3—Dy5—Dy2ii56.425 (13)
Dy1—Dy2—Dy5ii104.213 (19)C2—Dy5—Dy439.8 (3)
C2—Dy3—C1ii33.6 (3)Br6—Dy5—Dy493.80 (3)
C2—Dy3—Br197.1 (3)Br2—Dy5—Dy4129.92 (3)
C1ii—Dy3—Br196.7 (2)Br3—Dy5—Dy449.90 (3)
C2—Dy3—Br684.8 (2)Br9ii—Dy5—Dy487.31 (3)
C1ii—Dy3—Br6118.3 (2)Br5—Dy5—Dy4135.47 (3)
Br1—Dy3—Br693.53 (4)Dy3—Dy5—Dy456.545 (13)
C2—Dy3—Br496.1 (3)Dy2ii—Dy5—Dy479.862 (17)
C1ii—Dy3—Br494.4 (2)Dy3—Br1—Dy478.88 (3)
Br1—Dy3—Br4166.85 (4)Dy5—Br2—Dy2ii81.26 (3)
Br6—Dy3—Br487.35 (4)Dy5—Br2—Dy2vii173.49 (5)
C2—Dy3—Br5v116.5 (2)Dy2ii—Br2—Dy2vii102.81 (4)
C1ii—Dy3—Br5v82.9 (2)Dy1—Br3—Dy594.31 (4)
Br1—Dy3—Br5v88.59 (4)Dy1—Br3—Dy481.98 (3)
Br6—Dy3—Br5v158.19 (4)Dy5—Br3—Dy482.40 (3)
Br4—Dy3—Br5v85.82 (4)Dy3—Br4—Dy2ii74.70 (3)
C2—Dy3—Br9vi165.0 (2)Dy3—Br4—Dy1v100.81 (4)
C1ii—Dy3—Br9vi160.6 (2)Dy2ii—Br4—Dy1v175.51 (5)
Br1—Dy3—Br9vi86.44 (4)Dy1viii—Br5—Dy3iii81.11 (3)
Br6—Dy3—Br9vi80.48 (3)Dy1viii—Br5—Dy5175.47 (5)
Br4—Dy3—Br9vi80.76 (3)Dy3iii—Br5—Dy5102.63 (4)
Br5v—Dy3—Br9vi77.99 (3)Dy5—Br6—Dy381.10 (3)
C2—Dy3—Dy2ii46.0 (3)Dy1—Br7—Dy281.41 (4)
C1ii—Dy3—Dy2ii44.6 (2)Dy2—Br8—Dy479.17 (3)
Br1—Dy3—Dy2ii139.84 (3)Dy5ii—Br9—Dy1ii90.85 (3)
Br6—Dy3—Dy2ii97.22 (3)Dy5ii—Br9—Dy3ix99.30 (4)
Br4—Dy3—Dy2ii52.74 (3)Dy1ii—Br9—Dy3ix96.84 (4)
Br5v—Dy3—Dy2ii95.05 (3)Dy5ii—Br9—Dy479.96 (3)
Br9vi—Dy3—Dy2ii133.46 (3)Dy1ii—Br9—Dy479.62 (3)
C2—Dy3—Dy446.4 (3)Dy3ix—Br9—Dy4176.35 (4)
C1ii—Dy3—Dy448.3 (2)C2ii—C1—Dy1174.9 (7)
Br1—Dy3—Dy452.35 (3)C2ii—C1—Dy275.6 (6)
Br6—Dy3—Dy498.89 (3)Dy1—C1—Dy2102.7 (4)
Br4—Dy3—Dy4140.45 (3)C2ii—C1—Dy3ii70.1 (5)
Br5v—Dy3—Dy499.56 (3)Dy1—C1—Dy3ii105.2 (3)
Br9vi—Dy3—Dy4138.77 (3)Dy2—C1—Dy3ii89.3 (3)
Dy2ii—Dy3—Dy487.713 (18)C2ii—C1—Dy478.3 (5)
C2—Dy3—Dy536.4 (2)Dy1—C1—Dy4106.6 (4)
C1ii—Dy3—Dy570.0 (2)Dy2—C1—Dy490.7 (3)
Br1—Dy3—Dy597.29 (3)Dy3ii—C1—Dy4147.4 (4)
Br6—Dy3—Dy548.41 (2)C2ii—C1—Dy4ii70.8 (6)
Br4—Dy3—Dy593.11 (3)Dy1—C1—Dy4ii111.5 (4)
Br5v—Dy3—Dy5152.68 (3)Dy2—C1—Dy4ii145.5 (4)
Br9vi—Dy3—Dy5128.83 (3)Dy3ii—C1—Dy4ii86.4 (3)
Dy2ii—Dy3—Dy563.595 (14)Dy4—C1—Dy4ii75.5 (3)
Dy4—Dy3—Dy564.703 (15)C1ii—C2—Dy5175.8 (8)
C2—Dy3—Dy1ii68.1 (2)C1ii—C2—Dy376.3 (5)
C1ii—Dy3—Dy1ii34.5 (2)Dy5—C2—Dy3102.7 (4)
Br1—Dy3—Dy1ii95.23 (4)C1ii—C2—Dy2ii70.8 (6)
Br6—Dy3—Dy1ii152.30 (3)Dy5—C2—Dy2ii105.2 (4)
Br4—Dy3—Dy1ii89.95 (3)Dy3—C2—Dy2ii89.7 (3)
Br5v—Dy3—Dy1ii48.44 (2)C1ii—C2—Dy477.3 (6)
Br9vi—Dy3—Dy1ii126.24 (3)Dy5—C2—Dy4106.8 (4)
Dy2ii—Dy3—Dy1ii60.109 (16)Dy3—C2—Dy490.0 (3)
Dy4—Dy3—Dy1ii66.772 (17)Dy2ii—C2—Dy4147.2 (4)
Dy5—Dy3—Dy1ii104.320 (16)C1ii—C2—Dy4ii69.7 (5)
C1—Dy4—C298.4 (3)Dy5—C2—Dy4ii111.8 (4)
C1—Dy4—C1ii104.5 (3)Dy3—C2—Dy4ii145.0 (4)
C2—Dy4—C1ii31.9 (3)Dy2ii—C2—Dy4ii86.8 (3)
C1—Dy4—C2ii32.0 (3)Dy4—C2—Dy4ii75.0 (3)

Symmetry codes: (i) x, −y−1/2, z+1/2; (ii) −x+1, −y, −z+1; (iii) −x+1, y−1/2, −z+1/2; (iv) x+1, y, z+1; (v) −x+1, y+1/2, −z+1/2; (vi) x, −y+1/2, z−1/2; (vii) x−1, y, z−1; (viii) x, −y−1/2, z−1/2; (ix) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2169).

References

  • Brandenburg, K. (2005). DIAMOND Version 3.0d. Crystal Impact GbR, Bonn, Germany.
  • Liess, H. (1996). Dr. rer. nat. dissertation, University of Hannover, Germany, pp. 59–64.
  • Mattausch, H., Hoch, C. & Simon, A. (2007). Z. Naturforsch. Teil B62, 148–154.
  • Mattausch, H., Oeckler, O. & Simon, A. (2002). Z. Kristallogr. New Cryst. Struct.217, 458.
  • Meyer, G., Dötsch, S. & Staffel, T. (1987). J. Less-Common Met.127, 155–160.
  • Meyer, G. & Wickleder, M. S. (2000). Handbook on the Physics and Chemistry of Rare Earths, Vol. 28, edited by K. A. Gscheidner Jr & L. Eyring, pp. 53–129. Amsterdam: Elsevier.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Stoe & Cie (1999). X-SHAPE Version 1.06. Stoe & Cie, Darmstadt, Germany.
  • Stoe & Cie (2001). X-AREA (Version 1.15) and X-RED (Version 1.22). Stoe & Cie, Darmstadt, Germany.
  • Uhrlandt, S., Artelt, H. M. & Meyer, G. (1994). Z. Anorg. Allg. Chem.620, 1532–1536.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography