PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): i3.
Published online 2007 December 6. doi:  10.1107/S1600536807065403
PMCID: PMC2914881

NaFe(TeO3)2

Abstract

The hydro­thermally prepared title compound, sodium iron(III) bis­[trioxotellurate(IV)], is isotypic with its GaIII analogue and consists of corrugated layers with an overall composition of [FeTe2O6] together with Na+ cations. The layers extend parallel to (001) and are made up of [Fe2O10] edge-shared octa­hedral dimers and TeO3 trigonal pyramids sharing vertices. The Na+ cations are located in the cavities of this arrangement and link adjacent [FeTe2O6] layers via distorted [NaO8] polyhedra.

Related literature

For the isotypic structure NaGa(TeO3)2, see: Miletich & Pertlik (1998 [triangle]). For related structures, see: Weil (2005 [triangle], 2007 [triangle]); Weil & Stöger (2007 [triangle]). For a review on the crystal chemistry of tellurate(IV) oxocompounds, see: Dolgikh (1991 [triangle]).

Experimental

Crystal data

  • NaFe(TeO3)2
  • M r = 430.04
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-000i3-efi1.jpg
  • a = 7.8530 (15) Å
  • b = 10.448 (2) Å
  • c = 13.438 (3) Å
  • V = 1102.5 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 13.15 mm−1
  • T = 293 (2) K
  • 0.08 × 0.02 × 0.01 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.405, T max = 0.858
  • 11127 measured reflections
  • 1598 independent reflections
  • 1329 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.061
  • S = 1.03
  • 1598 reflections
  • 91 parameters
  • Δρmax = 1.77 e Å−3
  • Δρmin = −0.96 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; method used to solve structure: coordinates taken from an isotypic structure; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ATOMS (Dowty, 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065403/hb2673sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065403/hb2673Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support by the FWF (Fonds zur Förderung der wissenschaftlichen Forschung), project P19099-N17, is gratefully acknowledged.

supplementary crystallographic information

Comment

The present communication is part of our ongoing studies of the phase formation and structures of Te(IV)-containing oxocompounds formed under hydrothermal conditions (e.g. Weil, 2005, 2007; Weil & Stöger, 2007).

The crystal structure of the title compound, (I), is built up of layers with an overall composition [FeTe2O6]- extending parallel to (001). Adjacent layers are linked by Na+ cations that are located in the voids of this arrangement (Fig. 1).

The anionic layers consists of octahedral [FeO6] and trigonal-pyramidal TeO3 units as simple building blocks (Table 1). Two edge-sharing [FeO6] octahedra [mean Fe—O = 2.017 Å] form a centrosymmetric [Fe2O10] dimer which is connected to eight TeO3 units via oxygen-atom corners. The equatorial oxygen atoms of the dimer are linked to six Te1O3 groups whereas the axial oxygen atoms of the dimer are part of two Te2O3 groups capping both Fe atoms at the top and at the bottom (Fig. 2). Each of the free corners of the Te1O3 groups are further linked to adjacent [Fe2O10] dimers thus establishing the layered arrangement. The lone-pair electrons of the tellurium(IV) atoms point towards the free space and are aligned approximately parallel to [001]. The Na+ cations are surrounded by eight oxygen atoms, leading to distorted polyhedra with a mean Na—O of 2.650 Å. The Te—O bond lengths and mean O—Te—O angle of 96.3° are typical values for trigonal-pyramidal TeO3 units (Dolgikh, 1991). The next nearest O sites relative to the Te centres are outside of the first coordination spheres with distances of Te1—O2 = 2.549 (4) Å, Te1—O1[x + 1/2, -y + 1/2, z] = 2.570 (4) Å and Te2—O5 = 2.703 (4) Å.

The crystal structure of NaFe(TeO3)2 is isotypic with the GaIII analogue, NaGa(TeO3)2 (Miletich & Pertlik, 1998), and exhibits similar interatomic distances and angles.

Experimental

All chemicals used were of analytical grade (Merck, p.A.) and employed without further purification: 20 mg (0.5 mmol) NaOH, 53 mg (0.33 mmol) Fe2O3 and 160 mg (1 mmol) TeO2 were placed in a 5-ml Teflon-lined steel autoclave that was filled with 2 ml demineralized water. The autoclave was heated at 493 K for 6 d and then cooled to room temperature within 3 h. The reaction product consisted mainly of a mixture of unreacted Fe2O3 and TeO2. Only few colourless crystals of (I) with unspecific habit were obtained.

Refinement

For better comparison with the isotypic NaGa(TeO3)2 structure, the refinement was carried out in the non-standard setting Pcab of space group No. 61 (standard setting Pbca). The atomic coordinates of the Ga analogue were taken as starting parameters. The highest remaining peak in the final difference Fourier map is 0.71 Å from Te2 and the deepest hole is 0.79 Å from O4.

Figures

Fig. 1.
The crystal structure of NaGa(TeO3)2 in projection along [110].
Fig. 2.
The [Fe2O10] dimer with the corner-sharing TeO3 trigonal-pyramids attached. Atoms are drawn as displacement ellipsoids at the 90% probability level. [Symmetry operators: (i) -x + 1, -y + 1, z; (ii) -x + 1/2, y + 1/2, -z + 1; (iii) x + 1/2, -y + 1/2, z ...

Crystal data

NaFe(TeO3)2F000 = 1512
Mr = 430.04Dx = 5.182 Mg m3
Orthorhombic, PcabMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2bc 2acCell parameters from 2569 reflections
a = 7.8530 (15) Åθ = 3.0–30.0º
b = 10.448 (2) ŵ = 13.15 mm1
c = 13.438 (3) ÅT = 293 (2) K
V = 1102.5 (4) Å3Prism, colourless
Z = 80.08 × 0.02 × 0.01 mm

Data collection

Bruker SMART APEX CCD diffractometer1598 independent reflections
Radiation source: fine-focus sealed tube1329 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.053
T = 293(2) Kθmax = 30.0º
ω scansθmin = 3.0º
Absorption correction: multi-scan(SADABS; Bruker, 2002)h = −11→9
Tmin = 0.405, Tmax = 0.858k = −14→14
11127 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: isomorphous structure methods
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0323P)2] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.027(Δ/σ)max < 0.001
wR(F2) = 0.061Δρmax = 1.77 e Å3
S = 1.03Δρmin = −0.96 e Å3
1598 reflectionsExtinction correction: none
91 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Te10.54652 (4)0.28714 (3)0.42454 (2)0.00780 (9)
Te20.08184 (4)0.00810 (3)0.76667 (2)0.00932 (9)
Fe0.30472 (10)0.49980 (6)−0.02064 (5)0.00866 (15)
Na0.8320 (3)0.2417 (2)0.64216 (19)0.0254 (6)
O10.3210 (4)0.3435 (3)0.4480 (3)0.0122 (7)
O20.4293 (5)0.1849 (4)0.2665 (3)0.0169 (8)
O30.3696 (4)0.1292 (3)0.0402 (3)0.0106 (7)
O40.4983 (4)0.1292 (3)0.4888 (3)0.0104 (7)
O50.3769 (5)0.0296 (3)0.6643 (3)0.0107 (7)
O60.2625 (5)0.4796 (3)0.1281 (3)0.0119 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Te10.00751 (16)0.00640 (14)0.00950 (15)−0.00033 (11)0.00003 (11)0.00063 (11)
Te20.00962 (16)0.00905 (15)0.00928 (16)0.00021 (11)0.00013 (11)−0.00144 (11)
Fe0.0085 (3)0.0069 (3)0.0106 (4)0.0000 (3)−0.0002 (3)−0.0005 (2)
Na0.0326 (15)0.0142 (11)0.0294 (13)−0.0056 (10)−0.0082 (11)0.0034 (10)
O10.0065 (17)0.0113 (16)0.0188 (19)0.0005 (14)0.0010 (14)−0.0019 (14)
O20.022 (2)0.0110 (17)0.0175 (19)−0.0020 (15)−0.0020 (16)0.0000 (14)
O30.0087 (17)0.0094 (16)0.0138 (17)−0.0030 (14)−0.0017 (14)0.0023 (13)
O40.0074 (17)0.0085 (16)0.0152 (17)0.0012 (13)−0.0020 (13)0.0028 (13)
O50.0096 (17)0.0156 (17)0.0071 (17)0.0007 (14)−0.0014 (13)−0.0017 (14)
O60.0119 (18)0.0154 (17)0.0084 (17)−0.0003 (14)0.0003 (14)−0.0006 (13)

Geometric parameters (Å, °)

Na—O5i2.434 (4)Fe—O5vi2.036 (3)
Na—O6ii2.436 (4)Fe—O62.037 (4)
Na—O3ii2.491 (4)Fe—O4vii2.055 (4)
Na—O2iii2.581 (5)Fe—O4vi2.078 (4)
Na—O2ii2.755 (5)Te1—O11.893 (4)
Na—O1i2.758 (4)Te1—O3ii1.901 (4)
Na—O4i2.788 (4)Te1—O41.901 (4)
Na—O3iii2.958 (4)Te2—O2viii1.849 (4)
Fe—O3iv1.942 (4)Te2—O6ix1.892 (4)
Fe—O1v1.955 (4)Te2—O5x1.899 (4)
O1—Te1—O3ii92.59 (15)O6ii—Na—O4i123.02 (15)
O1—Te1—O490.44 (15)O3ii—Na—O4i68.23 (12)
O3ii—Te1—O495.54 (16)O2iii—Na—O4i104.45 (14)
O2viii—Te2—O6ix100.85 (16)O2ii—Na—O4i131.48 (14)
O2viii—Te2—O5x99.64 (16)O1i—Na—O4i58.10 (12)
O6ix—Te2—O5x98.64 (16)O5i—Na—O3iii109.39 (14)
O3iv—Fe—O1v101.34 (15)O6ii—Na—O3iii80.11 (13)
O3iv—Fe—O5vi87.79 (15)O3ii—Na—O3iii117.64 (17)
O1v—Fe—O5vi93.64 (15)O2iii—Na—O3iii68.48 (13)
O3iv—Fe—O695.17 (15)O2ii—Na—O3iii168.98 (14)
O1v—Fe—O692.48 (15)O1i—Na—O3iii57.21 (11)
O5vi—Fe—O6172.55 (15)O4i—Na—O3iii58.59 (11)
O3iv—Fe—O4vii174.47 (15)Te1—O1—Feviii140.2 (2)
O1v—Fe—O4vii81.12 (15)Te1—O1—Naxi91.60 (15)
O5vi—Fe—O4vii87.11 (14)Feviii—O1—Naxi94.66 (14)
O6—Fe—O4vii89.65 (14)Te2v—O2—Naxii105.36 (18)
O3iv—Fe—O4vi95.20 (15)Te2v—O2—Navii104.09 (17)
O1v—Fe—O4vi163.16 (15)Naxii—O2—Navii94.82 (15)
O5vi—Fe—O4vi83.80 (14)Te1vii—O3—Fexiii116.98 (18)
O6—Fe—O4vi89.11 (14)Te1vii—O3—Navii114.90 (17)
O4vii—Fe—O4vi82.13 (15)Fexiii—O3—Navii90.19 (14)
O5i—Na—O6ii170.30 (17)Te1vii—O3—Naxii85.51 (13)
O5i—Na—O3ii68.14 (13)Fexiii—O3—Naxii153.87 (17)
O6ii—Na—O3ii106.13 (15)Navii—O3—Naxii91.93 (13)
O5i—Na—O2iii92.37 (15)Te1—O4—Feii113.01 (17)
O6ii—Na—O2iii93.05 (14)Te1—O4—Fexiv143.49 (19)
O3ii—Na—O2iii160.49 (15)Feii—O4—Fexiv97.87 (15)
O5i—Na—O2ii76.12 (14)Te1—O4—Naxi90.52 (14)
O6ii—Na—O2ii94.86 (14)Feii—O4—Naxi135.71 (17)
O3ii—Na—O2ii73.11 (14)Fexiv—O4—Naxi79.65 (12)
O2iii—Na—O2ii102.25 (16)Te2xv—O5—Fexiv131.84 (19)
O5i—Na—O1i115.91 (14)Te2xv—O5—Naxi112.72 (17)
O6ii—Na—O1i67.10 (12)Fexiv—O5—Naxi89.63 (14)
O3ii—Na—O1i68.55 (13)Te2xvi—O6—Fe127.7 (2)
O2iii—Na—O1i124.14 (15)Te2xvi—O6—Navii106.73 (16)
O2ii—Na—O1i129.82 (15)Fe—O6—Navii102.93 (15)
O5i—Na—O4i63.09 (12)

Symmetry codes: (i) x+1/2, −y+1/2, z; (ii) −x+1, −y+1/2, z+1/2; (iii) −x+3/2, y, z+1/2; (iv) −x+1/2, y+1/2, −z; (v) −x+1/2, y, z−1/2; (vi) x, y+1/2, −z+1/2; (vii) −x+1, −y+1/2, z−1/2; (viii) −x+1/2, y, z+1/2; (ix) −x+1/2, y−1/2, −z+1; (x) x−1/2, −y, −z+3/2; (xi) x−1/2, −y+1/2, z; (xii) −x+3/2, y, z−1/2; (xiii) −x+1/2, y−1/2, −z; (xiv) x, y−1/2, −z+1/2; (xv) x+1/2, −y, −z+3/2; (xvi) −x+1/2, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2673).

References

  • Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dolgikh, V. A. (1991). Russ. J. Inorg. Chem. (Eng. Transl.), 36, 1117–1129.
  • Dowty, E. (2006). ATOMS for Windows Version 6.3. Shape Software, Kingsport, Tennessee, USA.
  • Miletich, R. & Pertlik, F. (1998). J. Alloys Compds, 268, 107–111.
  • Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany. [PubMed]
  • Weil, M. (2005). Acta Cryst. C61, i103–i105. [PubMed]
  • Weil, M. (2007). Z. Anorg. Allg. Chem.633, 1217–1222.
  • Weil, M. & Stöger, B. (2007). Acta Cryst. E63, i202.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography