PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): i1.
Published online 2007 December 6. doi:  10.1107/S1600536807062368
PMCID: PMC2914879

Redetermination of dicerium(III) tris­(sulfate) tetra­hydrate

Abstract

Ce2(SO4)3(H2O)4 was obtained hydro­thermally from an aqueous solution of cerium(III) oxide, trimethyl­amine and sulfuric acid. The precision of the structure determination has been significantly improved compared with the previous result [Dereigne (1972 [triangle]). Bull. Soc. Fr. Mineral. Cristallogr. 95, 269–280]. The coordination about the two Ce atoms is achieved by seven and six bridging O atoms from sulfate anions. Each S atom makes four S—O—Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands.

Related literature

For related literature, see: Doran et al. (2002 [triangle]); Li et al. (1998 [triangle]); Plévert et al. (2001 [triangle]); Shi (1987 [triangle]); Xu, Cheng & You (2006 [triangle]); Xu, Ding et al. (2006 [triangle]); Yuan et al. (2004 [triangle]); Zhang et al. (2004 [triangle]). For the previous structure determination, see: Dereigne (1972 [triangle]).

Experimental

Crystal data

  • Ce2(SO4)3(H2O)4
  • M r = 640.48
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-000i1-efi1.jpg
  • a = 13.1257 (14) Å
  • b = 7.2520 (8) Å
  • c = 13.3823 (14) Å
  • β = 92.5720 (10)°
  • V = 1272.5 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 7.65 mm−1
  • T = 293 (2) K
  • 0.13 × 0.12 × 0.10 mm

Data collection

  • Bruker APEX2 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.437, T max = 0.515 (expected range = 0.394–0.466)
  • 5923 measured reflections
  • 2201 independent reflections
  • 2071 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.067
  • S = 1.09
  • 2201 reflections
  • 215 parameters
  • 16 restraints
  • Only H-atom coordinates refined
  • Δρmax = 1.12 e Å−3
  • Δρmin = −2.16 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a [triangle]); molecular graphics: SHELXTL (Sheldrick, 1997b [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062368/fi2049sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062368/fi2049Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to Dr Zhang for help with collecting the diffraction data.

supplementary crystallographic information

Comment

Over the past decades, the design and synthesis of new three–dimensional solid state materials have received great attention, due to their functional applications in catalysis and optical device. As the building elements germanium has been choosen to synthesize new porous materials (Li et al., 1998; Plévert et al., 2001; Xu, Cheng & You, 2006; Xu, Ding et al., 2006). In the last few years, an important advance in three dimensional inorganic materials has been achieved by study of lanthanide sulfates frameworks (Zhang et al.,2004; Yuan et al., 2004; Xu, Ding et al., 2006; Doran et al., 2002). In this work, we synthesized the title compound, Cerium(3+) sulfate tetrahydrate, which features a three–dimensional framework. The structure of title compound had been reported previously (Dereigne et al., 1972), however, the precision of redetermination is much improved.

As isostructure with La2(SO4)3(H2O)4 and Nd2(SO4)3(H2O)4 (Shi, 1987), the framework of title compound is constructed from CeO9 and CeO8 polyhedra and SO4 tetrahedra. As shown in Fig. 1 and 2, the asymmetric unit contains two Ce3+, three SO42– groups and four water molecules, all of which belong to the inorganic framework. The coordination about Ce1 and Ce2, respectively, is achieved by bridging oxygen atoms from sulfate anions. Each S atom makes four S–O–Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands of Ce^3+^.

The Ce atom has the typical geometrical parameters, with Ce—O distances of 2.354 (3)– 2.710 (3)Å (Table 1). The O—Ce—O angles are between 59.28 (14) and 139.03 (14)°. These bond distances and bond angles are in agreement with those found in similar rare-earth compounds (Zhang et al.,2004; Yuan et al., 2004). The geometry of the sulfate ions is unexceptional. Fig. 3 shows the three-dimensional arrangement in the unit cell, displaying the way the different CeO9 polyhydra are connected by bridging sulfates.

Experimental

Colorless block-shaped crystals were synthesized hydrothermally from a mixture of CeCl3.6H2O, H2SO4 (98%), H2O and trimethylamine(25%). All the chemicals are purchased from Shanghai Chemical Reagent Factory. In a typical synthesis, CeCl3.6H2O(0.2993 g) was dissolved in a mixture of trimethylamine (25%, 0.7893 g) and of water (1 ml) followed by the addition of H2SO4 (98%) (0.3528 g) with constant stirring. Finally, the mixture was kept in a 25 ml Teflon-lined steel autoclave at 180 °C for 6 days. The autoclave was slowly cooled to room temperature, and then the product was filtered, washed with distilled water, and dried at room temperature. Colorless block-shaped crystals of the title compound were obtained.

Refinement

The highest peak in the difference map is 1.12 e/Å3, and 1.26 (2) Å from Ce2, while the minimum peak is -2.16 (2) Å from Ce1. 5. The H atoms of water were located from different map, and the O—H distances are restrained to 0.85 (2) Å.

Figures

Fig. 1.
The coordination of Ce1 for title compound. Displacement ellipsoids at the 70% probability level. Symmetry codes as in Table 1.
Fig. 2.
The coordination of Ce2 for title compound. Displacement ellipsoids at the 70% probability level. Symmetry codes as in Table 1.
Fig. 3.
The crystal packing in the unit cell of Ce(SO4)(OH).

Crystal data

Ce2(SO4)3(H2O)4F000 = 1200
Mr = 640.48Dx = 3.343 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2201 reflections
a = 13.1257 (14) Åθ = 2.1–25.0º
b = 7.2520 (8) ŵ = 7.65 mm1
c = 13.3823 (14) ÅT = 293 (2) K
β = 92.5720 (10)ºBlock, colourless
V = 1272.5 (2) Å30.13 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker APEX2 CCD diffractometer2201 independent reflections
Radiation source: fine-focus sealed tube2071 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.032
T = 293(2) Kθmax = 25.0º
ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 2003)h = −12→15
Tmin = 0.437, Tmax = 0.515k = −8→8
5923 measured reflectionsl = −15→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027Only H-atom coordinates refined
wR(F2) = 0.067  w = 1/[σ2(Fo2) + (0.0371P)2 + 1.0649P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2201 reflectionsΔρmax = 1.12 e Å3
215 parametersΔρmin = −2.16 e Å3
16 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0953 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ce10.413692 (17)0.24066 (3)0.964316 (18)0.00669 (14)
Ce2−0.073660 (17)0.26197 (3)0.849355 (18)0.00793 (14)
S10.59971 (8)0.26189 (10)1.13380 (8)0.0068 (2)
S20.13846 (6)0.38957 (12)0.95722 (7)0.0088 (2)
S30.34712 (6)−0.10740 (12)1.15208 (7)0.0077 (2)
O10.3887 (2)−0.0086 (4)1.2394 (2)0.0179 (6)
O20.7082 (2)0.2370 (3)1.1325 (3)0.0164 (7)
O30.54510 (19)0.0990 (3)1.0873 (2)0.0109 (6)
O40.2552 (2)−0.2061 (4)1.1792 (2)0.0153 (6)
O50.5660 (2)0.2917 (4)1.2352 (2)0.0152 (6)
O60.15247 (19)0.4888 (4)1.0522 (2)0.0174 (6)
O70.32350 (19)0.0207 (4)1.0695 (2)0.0137 (6)
O80.07908 (19)0.4978 (4)0.8833 (2)0.0134 (6)
O90.0762 (3)0.2206 (4)0.9727 (3)0.0158 (7)
O100.23802 (19)0.3357 (4)0.9218 (2)0.0163 (6)
O110.5637 (2)0.4210 (4)1.0702 (2)0.0121 (6)
O120.4231 (3)−0.2449 (3)1.1215 (3)0.0134 (7)
O1W0.3582 (2)0.3879 (4)1.1345 (2)0.0181 (6)
H1WB0.2964 (19)0.371 (5)1.152 (4)0.027*
H1WA0.381 (3)0.497 (4)1.138 (4)0.027*
O2W−0.13163 (19)0.1354 (4)1.0108 (2)0.0155 (6)
H2WB−0.185 (2)0.179 (5)1.037 (3)0.023*
H2WA−0.114 (3)0.028 (4)1.030 (3)0.023*
O3W−0.0481 (2)−0.0777 (4)0.8356 (2)0.0218 (6)
H3WB−0.049 (3)−0.142 (4)0.889 (2)0.033*
H3WA−0.005 (3)−0.115 (4)0.793 (3)0.033*
O4W0.3708 (3)0.2180 (5)0.7790 (3)0.0245 (8)
H4WB0.401 (3)0.147 (6)0.738 (3)0.037*
H4WA0.312 (2)0.258 (6)0.758 (4)0.037*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ce10.0052 (2)0.00827 (18)0.0066 (2)0.00028 (6)−0.00017 (12)0.00084 (7)
Ce20.0056 (2)0.00981 (18)0.0083 (2)0.00046 (6)0.00028 (13)0.00215 (7)
S10.0057 (5)0.0090 (5)0.0055 (5)0.0001 (3)−0.0013 (4)0.0004 (3)
S20.0057 (4)0.0099 (4)0.0106 (5)0.0002 (3)−0.0002 (3)−0.0003 (3)
S30.0062 (4)0.0089 (4)0.0082 (5)−0.0012 (3)0.0006 (3)−0.0009 (3)
O10.0210 (14)0.0193 (14)0.0134 (14)−0.0032 (12)−0.0009 (11)−0.0063 (12)
O20.0081 (16)0.0242 (17)0.0169 (18)0.0004 (10)0.0000 (13)−0.0027 (10)
O30.0113 (13)0.0083 (13)0.0129 (14)−0.0018 (10)−0.0022 (11)0.0008 (11)
O40.0084 (14)0.0212 (13)0.0164 (15)−0.0026 (12)0.0005 (11)0.0046 (13)
O50.0160 (16)0.0219 (13)0.0081 (15)−0.0015 (12)0.0039 (12)−0.0029 (13)
O60.0148 (14)0.0217 (14)0.0153 (14)0.0032 (11)−0.0024 (11)−0.0048 (12)
O70.0107 (13)0.0149 (13)0.0153 (14)−0.0019 (11)−0.0009 (10)0.0014 (12)
O80.0129 (13)0.0119 (13)0.0153 (15)0.0000 (10)−0.0011 (10)0.0032 (11)
O90.0163 (17)0.0104 (13)0.0205 (18)−0.0026 (11)−0.0022 (13)0.0036 (12)
O100.0089 (13)0.0241 (16)0.0160 (15)0.0029 (12)−0.0005 (10)−0.0028 (12)
O110.0167 (14)0.0088 (13)0.0104 (14)−0.0014 (11)−0.0024 (11)0.0026 (11)
O120.0115 (17)0.0143 (16)0.015 (2)0.0013 (9)0.0053 (12)0.0003 (10)
O1W0.0126 (13)0.0131 (14)0.0290 (17)−0.0034 (11)0.0055 (12)−0.0034 (12)
O2W0.0139 (14)0.0141 (13)0.0190 (15)0.0006 (11)0.0049 (11)0.0029 (12)
O3W0.0349 (17)0.0137 (14)0.0172 (15)0.0030 (12)0.0059 (13)0.0009 (12)
O4W0.0221 (18)0.0371 (17)0.0137 (17)0.0168 (14)−0.0068 (14)−0.0093 (14)

Geometric parameters (Å, °)

Ce1—O102.449 (2)S1—O21.437 (3)
Ce1—O72.465 (3)S1—O51.462 (3)
Ce1—O12i2.476 (4)S1—O111.498 (3)
Ce1—O11ii2.517 (3)S1—O31.502 (3)
Ce1—O4W2.524 (3)S2—O81.460 (3)
Ce1—O32.547 (3)S2—O101.463 (3)
Ce1—O3i2.621 (3)S2—O61.465 (3)
Ce1—O1W2.647 (3)S2—O91.493 (3)
Ce1—O112.710 (3)S3—O11.456 (3)
Ce1—S13.2607 (11)S3—O41.463 (3)
Ce2—O1iii2.354 (3)S3—O71.466 (3)
Ce2—O4iv2.430 (3)S3—O121.481 (3)
Ce2—O5iii2.470 (3)O1—Ce2vi2.354 (3)
Ce2—O6v2.489 (3)O3—Ce1i2.621 (3)
Ce2—O3W2.494 (3)O4—Ce2iv2.430 (3)
Ce2—O2W2.497 (3)O5—Ce2vi2.470 (3)
Ce2—O92.529 (4)O6—Ce2v2.489 (3)
Ce2—O82.659 (3)O11—Ce1ii2.517 (3)
Ce2—S23.2143 (9)O12—Ce1i2.476 (4)
O10—Ce1—O780.99 (9)O4iv—Ce2—O9144.23 (11)
O10—Ce1—O12i135.57 (11)O5iii—Ce2—O978.93 (11)
O7—Ce1—O12i136.10 (8)O6v—Ce2—O994.03 (10)
O10—Ce1—O11ii78.49 (9)O3W—Ce2—O980.07 (9)
O7—Ce1—O11ii143.04 (9)O2W—Ce2—O969.51 (10)
O12i—Ce1—O11ii77.96 (8)O1iii—Ce2—O875.74 (9)
O10—Ce1—O4W67.91 (10)O4iv—Ce2—O8149.39 (9)
O7—Ce1—O4W115.31 (11)O5iii—Ce2—O868.43 (9)
O12i—Ce1—O4W72.81 (13)O6v—Ce2—O876.73 (8)
O11ii—Ce1—O4W84.61 (10)O3W—Ce2—O8123.02 (9)
O10—Ce1—O3150.11 (9)O2W—Ce2—O8110.19 (8)
O7—Ce1—O372.45 (8)O9—Ce2—O853.57 (8)
O12i—Ce1—O374.32 (10)O1iii—Ce2—S2102.43 (7)
O11ii—Ce1—O3115.47 (8)O4iv—Ce2—S2160.40 (8)
O4W—Ce1—O3136.36 (9)O5iii—Ce2—S270.81 (7)
O10—Ce1—O3i113.98 (9)O6v—Ce2—S285.72 (6)
O7—Ce1—O3i69.68 (8)O3W—Ce2—S2101.58 (7)
O12i—Ce1—O3i72.32 (8)O2W—Ce2—S290.50 (6)
O11ii—Ce1—O3i147.19 (9)O9—Ce2—S226.89 (7)
O4W—Ce1—O3i73.70 (9)O8—Ce2—S226.70 (6)
O3—Ce1—O3i69.49 (9)O2—S1—O5111.78 (19)
O10—Ce1—O1W78.08 (9)O2—S1—O11112.17 (17)
O7—Ce1—O1W67.17 (8)O5—S1—O11108.23 (17)
O12i—Ce1—O1W132.17 (10)O2—S1—O3110.58 (15)
O11ii—Ce1—O1W78.67 (9)O5—S1—O3109.98 (17)
O4W—Ce1—O1W144.47 (9)O11—S1—O3103.78 (17)
O3—Ce1—O1W79.12 (8)O2—S1—Ce1134.25 (15)
O3i—Ce1—O1W132.38 (8)O5—S1—Ce1113.83 (13)
O10—Ce1—O11129.81 (9)O11—S1—Ce155.52 (11)
O7—Ce1—O11111.72 (8)O3—S1—Ce149.18 (10)
O12i—Ce1—O1167.22 (10)O8—S2—O10112.44 (16)
O11ii—Ce1—O1162.40 (10)O8—S2—O6111.47 (16)
O4W—Ce1—O11132.05 (10)O10—S2—O6109.46 (15)
O3—Ce1—O1153.24 (9)O8—S2—O9104.86 (17)
O3i—Ce1—O11115.95 (7)O10—S2—O9109.15 (18)
O1W—Ce1—O1165.00 (8)O6—S2—O9109.32 (19)
O10—Ce1—S1144.70 (7)O8—S2—Ce254.92 (10)
O7—Ce1—S189.84 (6)O10—S2—Ce2123.08 (11)
O12i—Ce1—S171.67 (9)O6—S2—Ce2127.12 (11)
O11ii—Ce1—S189.48 (6)O9—S2—Ce250.02 (13)
O4W—Ce1—S1144.45 (8)O1—S3—O4108.98 (17)
O3—Ce1—S126.51 (6)O1—S3—O7110.62 (16)
O3i—Ce1—S194.06 (6)O4—S3—O7110.38 (16)
O1W—Ce1—S166.99 (6)O1—S3—O12108.69 (18)
O11—Ce1—S127.09 (6)O4—S3—O12108.21 (17)
O1iii—Ce2—O4iv81.47 (10)O7—S3—O12109.91 (19)
O1iii—Ce2—O5iii82.75 (10)S3—O1—Ce2vi159.40 (18)
O4iv—Ce2—O5iii128.77 (10)S1—O3—Ce1104.31 (13)
O1iii—Ce2—O6v72.44 (10)S1—O3—Ce1i138.41 (14)
O4iv—Ce2—O6v77.08 (10)Ce1—O3—Ce1i110.51 (9)
O5iii—Ce2—O6v141.23 (10)S3—O4—Ce2iv148.94 (18)
O1iii—Ce2—O3W136.83 (10)S1—O5—Ce2vi144.59 (18)
O4iv—Ce2—O3W87.59 (10)S2—O6—Ce2v140.98 (15)
O5iii—Ce2—O3W72.09 (10)S3—O7—Ce1138.57 (15)
O6v—Ce2—O3W144.78 (10)S2—O8—Ce298.38 (13)
O1iii—Ce2—O2W139.13 (9)S2—O9—Ce2103.09 (16)
O4iv—Ce2—O2W74.93 (9)S2—O10—Ce1147.70 (16)
O5iii—Ce2—O2W137.81 (9)S1—O11—Ce1ii144.95 (16)
O6v—Ce2—O2W70.06 (9)S1—O11—Ce197.39 (12)
O3W—Ce2—O2W75.42 (9)Ce1ii—O11—Ce1117.60 (10)
O1iii—Ce2—O9129.31 (9)S3—O12—Ce1i136.67 (15)

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, −y+1, −z+2; (iii) x−1/2, −y+1/2, z−1/2; (iv) −x, −y, −z+2; (v) −x, −y+1, −z+2; (vi) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2049).

References

  • Bruker (2005). SAINT and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dereigne, A. (1972). Bull. Soc. Fr. Mineral. Cristallogr.95, 269–280.
  • Doran, M., Norquist, A. & O’Hare, D. (2002). Chem. Commun. pp. 2946–2947. [PubMed]
  • Li, H., Eddaoudi, M., Richardson, D. A. & Yaghi, O. M. (1998). J. Am. Chem. Soc.120, 8567–8568.
  • Plévert, J., Gentz, T. M., Laine, A., Li, H., Young, V. G., Yaghi, O. M. & O’Keeffe, M. (2001). J. Am. Chem. Soc.123, 12706–12707. [PubMed]
  • Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1997b). SHELXTL Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Shi, B. (1987). Jiegouhuaxue, 6, 70–72.
  • Xu, Y., Cheng, L. & You, W. (2006). Inorg. Chem.45, 7705–7708. [PubMed]
  • Xu, Y., Ding, S.-H., Zhou, G.-P. & Liu, Y.-G. (2006). Acta Cryst. E62, m1749–m1750.
  • Yuan, Y., Song, J. & Mao, J. (2004). Inorg. Chem. Commun.7, 24–26.
  • Zhang, Q., Lu, C., Yang, W., Chen, S. & Yu, Y. (2004). Inorg. Chem. Commun.7, 889–892.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography