PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of springeropenLink to Publisher's site
Transgenic Research
 
Transgenic Res. 2010 August; 19(4): 519–533.
Published online 2010 June 19. doi:  10.1007/s11248-010-9411-8
PMCID: PMC2902731

Could protein tertiary structure influence mammary transgene expression more than tissue specific codon usage?

Abstract

Animal mammary glands have been successfully employed to produce therapeutic recombinant human proteins. However, considerable variation in animal mammary transgene expression efficiency has been reported. We now consider whether aspects of codon usage and/or protein tertiary structure underlie this variation in mammary transgene expression.

Electronic supplementary material

The online version of this article (doi:10.1007/s11248-010-9411-8) contains supplementary material, which is available to authorized users.

Keywords: Transgenic animal bioreactor, Codon usage, Mammary gland, Tertiary structure

Introduction

The expression of functional proteins in heterologous hosts is a cornerstone of modern biopharming. However, many human proteins are often difficult to express in unicellular organisms such as bacterium and yeast. The underlying problem is that codon bias has a profound impact on the heterologous expression of human proteins in these organisms. Codon usage has been found to be the single most important factor in prokaryotic gene expression. Therefore laborious and time consuming codon optimization is often necessary to achieve a successful expression in unicellular organisms (Gustafsson et al. 2004). Contrary to unicellular organisms, no obvious codon bias has been observed among human and several other mammals in previous studies. Thus animal mammary gland is considered an ideal bioreactor for producing functional human proteins without codon optimization. With this concept in mind, a number of transgenic livestock have been created to produce different recombinant human proteins in their milk, and in 2006 a recombinant human protein purified from a transgenic goat was approved for clinical use in Europe by the European Medicine Agency (Houdebine 2009).

However, considerable variation in expression efficiency has been found in the heterologuous expressions of human proteins in the milk of transgenic animals produced in our lab and other groups. Generally a number of proteins such as serpin peptidase inhibitors and immunoglobulins which are abundant in human tissues other than mammary gland tend to exhibit a higher expression level in transgenic milk, while many other human proteins such as interleukin-2, coagulation factor 8 and catalase are difficult to express in milk (Wright et al. 1991; Tang et al. 2008; Buhler et al. 1990; Niemann et al. 1999; He et al. 2008a, b). These examples cause us to question whether tissue specific codon usage pattern affects translational regulation during the heterologuous expression of human proteins in animal mammary gland?

Recently several independent studies concluded that codon bias might be a factor involved in translation regulation in humans. One study concluded that genes selectively expressed in one human tissue can often be discriminated from genes expressed in another tissue on the basis of their synonymous codon usage (Plotkin et al. 2004) while another study reported that the amount of tRNA varies widely among different human tissues based on microarray results, further more they showed that the relative tRNA abundance significantly correlates with codon usage of tissue specific genes (Dittmar et al. 2006). The effective number of codons (ENC) is a most common index for measurement of codon bias. ENC is analogous to the effective number of alleles in population genetics. However, ENC can not reveal which codons are more frequent than others but rather indicates the overall departure from random synonymous codon choice. As a result, two genes may exhibit the same degree of overall bias, but differ dramatically in their particular choice of synonymous codons. Thus in this study, we used a two-tailed Fisher exact test to measure the distance of synonymous codon usage between two genes (Plotkin et al. 2004). Unlike metrics such as ‘‘relative synonymous codon usage’’, which are noisy when applied to individual genes, the Fisher exact test for small sample sizes based codon usage measure can be applied to genes that contain only a few examples of each amino acid.

We propose two scenarios: first, the different expression levels of recombinant human proteins in the milk of transgenic animals is due to the variation in synonymous codon usage patterns between mammary gland and other human tissues; or, second, protein tertiary structure may influence mammary transgene expression.

Human and mouse tissue specific codon usage

We have made pair-wise comparisons of codon usage among seven human tissues. When comparing heart to kidney (Fig. 1), virtually all kidney associated genes are clustered in a separate middle clade from the heart associated genes. The observed separation between these two classes of genes would not have occurred by random chance (P < 0.001). The observed clustering is the result of systematic differential codon usage between heart and kidney specific genes. Fig. 1 indicates that we can generally discriminate between heart and kidney expressed genes on the basis of their codon usage alone. Similarly, kidney specific genes can be discriminated from lung and pancreas specific genes (supplementary Fig. 1). However, many pairs of tissue specific gene sets do not exhibit significantly different codon usage patterns (e.g., brain versus pancreas, P = 0.384; supplementary Fig. 2). Unexpectedly, in the tested six mouse tissues, we can not observe any pair of tissues that can be separated from each other on the basis of their codon usage with a statistical significant test. Only heart specific genes can be nearly discriminated from liver specific genes (P = 0.072; supplementary Fig. 3).

Fig. 1
A dendogram reflecting the codon usage of 22 genes selectively expressed in heart (red) and 17 genes selectively expressed in human kidney (black). The pairwise distances underlying this tree reflect the degree to which the genes differ in their codon ...

When comparing human mammary gland to six other tissues, only heart, lung and pancreas specific genes can be discriminated from mammary gland specific genes on the basis of codon usage (heart versus mammary gland, P < 0.001; lung versus mammary gland, P = 0.002; pancreas versus mammary gland, P < 0.001; supplementary Fig. 4), and the other three tissues in the test can not be distinguished from mammary gland (brain versus mammary gland, P = 0.368; kidney versus mammary gland, P = 0.368; liver versus mammary gland, P = 0.536; supplementary Fig. 5). In the tested six mouse tissues, only genes selectively expressed in heart and pancreas can be distinguished from mouse mammary gland specific genes (heart versus mammary gland, P = 0.002; pancreas versus mammary gland, P = 0.038; supplementary Fig. 6). Thus there does appear to be codon usage differences between mammalian tissues.

Does expression levels of recombinant human proteins in transgenic milk correlate with mammary gland specific codon usage?

Successful examples of expressing recombinant human proteins in transgenic animals to date are summarized in Table 1 and the greatest expression level of the 31 recombinant proteins reported in Table 1 were showed in Fig. 2. When comparing codon usage of the 31 recombinant proteins expressed in the milk of transgenic animals to human mammary gland specific genes and milk proteins, we found several most efficiently expressed recombinant human proteins (SERPINC1, ATCD20IgL, REG3A, LTF, FGA, FGB and FGG) were clustered close to the mammary gland specific genes and milk proteins. However, we also found the moderately expressed FIX and those less efficiently expressed recombinant proteins (LYZ, CAT, IL2 and mCol18a1) were clustered close to most human mammary gland specific genes and milk proteins. The observed three classes of genes can not be discriminated from each other (mammary gland, P = 0.574; milk proteins, P = 0.900; supplementary Fig. 7). Similar results can be observed in the comparing of recombinant proteins to mouse mammary gland specific genes and milk proteins (mammary gland, P = 0.952; milk proteins, P = 0.974; supplementary Fig. 8). Further comparing codon usage of milk proteins among 19 different mammals showed that most milk proteins were prone to use similar codon usage patterns among different mammalian species (supplementary Fig. 9). Thus we compared the codon usage of recombinant proteins to milk proteins in the main five livestock cow, sheep, goat, rabbit and pig. In each animal, except for certain proteins, the cluster result was quite similar to human and mouse (Fig. 3). Thus we dismiss our proposal that expression levels of recombinant human proteins in the milk of transgenic animals correlate with mammary gland specific codon usage patterns.

Table 1
Expression of recombinant human proteins in the milk of transgenic animals
Fig. 2
Expression levels of recombinant human proteins in the milk of transgenic animals. The expression level of each protein presents the highest one among different studies summarized in Table 1; ATCD20 IgH and ATCD20 IgL indicate the heavy and light ...
Fig. 3
Dendograms reflecting the codon usage of milk proteins of the main five livestock (red) and recombinant proteins. The top 13 high level expressed recombinant proteins ([greater, double equals]5 mg/mL) are showed in blue, and moderate and lower expressed recombinant ...

Recombinant human proteins with greater expression levels in transgenic milk share similar protein domains with milk proteins

The main domains of recombinant proteins expressed in the milk of transgenic animals and mammalian milk proteins derived from CATH were summarized in Table 2. Casein makes up the main component of milk proteins, as in bovine milk, it reaches as great as 82% of the total milk proteins (Jensen 1995). When we investigated the main domains of the main four caseins [casein alpha S1 (CSN1S1), casein alpha S2 (CSN1S2), casein beta (CSN2), and casein kappa (CSN3)], it can be observed that all four caseins share a similar alpha–beta based major domain (Fig. 4). With the exception of CSN1S2 which is composed of an alpha–beta barrel domain, the other three caseins all are composed of a 3-layer (aba) sandwich shaped major domain. Interestingly we found that within the top 13 high level expressed recombinant proteins in the milk of transgenic animals (expression level [greater, double equals]5 mg/mL), 10 proteins share a similar alpha–beta based major domain with casein proteins, especially those with extra-higher expression levels such as SERPINA1, SERPINC1, SERPING1, REG3A, LTF and BCHE which all possess a 2-layer or 3-layer (aba) sandwich shaped major domain similar to the most abundant milk proteins CSN1S1, CSN2 and CSN3. Beside the 10 high level expressed proteins, there are another two proteins CEL (1.00 mg/mL) and Calc1(2.10 mg/mL) each has a CSN2 like 3-layer (aba) sandwich domain and mainly alpha beta domain, respectively, though these two recombinant proteins do not get an extra-higher expression levels in the transgenic milk. However, the moderate expression levels are probably due to their cDNA based expression constructs. Because the gene structure used in an expression construct seems to have significant impact on expression level, generally a genomic DNA sequence results in several orders of magnitude greater expression level than a cDNA sequence (Whitelaw et al. 1991).

Table 2
The main domains of recombinant proteins expressed in transgenic milk
Fig. 4
The tertiary structures of the main domains of casein proteins, 10 recombinant human proteins highly expressed in the milk of transgenic animal, and two moderately expressed proteins CEL (1.00 mg/mL) and Calc1(2.10 mg/mL) based on cDNA ...

Promoter plays a critical role at transcriptional regulation of transgene expression. Milk protein gene promoters must be used when expressing recombinant proteins in animal mammary gland. Promoters derived from κ-casein and αS2-casein are particularly weak (Houdebine 2000). In Table 1, none of the reported studies used these two kinds of promoter. Bovine αS1-casein, goat β-casein, mouse murine acidic protein, and ovine β-lactoglobulin derived promoters were most popularly used in these studies. Under the regulation of ovine β-lactoglobulin promoter and using genomic DNA of the foreign gene, transgenic sheep expressed high level of SERPINA1 (35 mg/mL) and FIB (5 mg/mL) which both possessing major domains similar to caseins, whereas lower level of FIX (1 mg/mL) which has a major domain distinct with caseins. Similarly, under the control of goat beta-casein promoter, transgenic goats expressed high levels of SERPINC1 (20 mg/mL) and SERPINA1 (14 mg/mL), whereas lower levels of AFP (1.1 mg/mL) and tPA (3 mg/mL);furthermore, under the control of bovine αS2-casein, transgenic rabbits expressed high levels of SERPING1 (12 mg/mL) and GAA (8 mg/mL), whereas lower levels of tPA (0.05 mg/mL), NGF(0.25 mg/mL) and IGF1(1 mg/mL). These cases may indicate protein structure appears to be an important factor affecting the expression level of transgene in the mammary gland. Taken together, we suggest that those recombinant proteins share similar major domains to casein proteins may have potential to achieve a greater expression level in the milk of transgenic animals when they are under similar transcriptional regulation.

Materials and methods

Gene sequences analysis

Coding sequences of genes in this study were obtained from GenBank. On the basis of BioGPS (http://biogps.gnf.org/#goto=welcome) and several other extensive mRNA expression microarray studies (Warrington et al. 2000; Hsiao et al. 2001; Liang et al. 2006; Shyamsundar et al. 2005; Saito-Hisaminato et al. 2002), we have identified genes which are selectively expressed in human and mouse mammary gland at lactation stage and in six other tissues: human [mammary gland (13 genes), brain (25 genes), heart (22 genes), kidney (17 genes), liver (26 genes), lung (19 genes) and pancreas (27 genes; S1)] and mouse [mammary gland (15 genes), brain (24 genes), heart (22 genes), kidney (13 genes), liver (24 genes), lung (17 genes) and pancreas (21 genes; S2)].

The sequences of animal milk protein genes and recombinant proteins were summarized in supporting materials Table S3 and Table S4 respectively.

Codon usage analysis

For this study, the distance of synonymous codon usage between two genes were measured based on a two-tailed Fisher exact test method (Plotkin et al. 2004). Briefly, degree of codon bias in common sense as the departure from random synonymous codon choice is not concerned, but rather the degree to which genes differ in their encoding of amino acids is concerned. Given the coding sequences for a pair of genes, absolute frequency of each codon in each gene is first tabulated with condonW (http://codonw.sourceforge.net//). For each amino acid, a two-tailed Fisher exact test on the n × 2 contingency table given by the frequencies of the amino acid’s synonymous codons is calculated (e.g., for Ser n = 4: TCA, TCC, TCG, and TCT). As a result, for each amino acid a P-value indicating whether or not the genes use significantly different codons to encode that amino acid is obtained. For example, when comparing human brain (25 genes) to heart (22 genes), distance between codon usage of every pair of genes (including pairs from the same tissue) is calculated, thus obtaining a 47-by-47 symmetric matrix of pairwise distances. Distance between two genes is given by the number of amino acids that exhibit significantly different (P < 0.01) codon usage, as defined above (detailed SAS program was presented in supplementary materials S5). Then by using the neighbor joining method (PHYLIP v3.66; http://evolution.gs.washington.edu/phylip.html), a dendogram that graphically represents the measured pairwise distances between the codon usage in the study genes can be produced. To test whether observed clustering of genes in a dendogram is nonrandom, P value is calculated by comparing the observed summed distances along the tree between genes of the same tissue against a null distribution produced by randomly permuting the labels of the leaves.

Protein main domain analysis

Domains of recombinant proteins expressed in the milk of transgenic animals and mammalian milk proteins were evaluated with CATH (http://www.cathdb.info/) which is a hierarchical classification of protein domain structures based on clustering proteins at four major levels: Class (C), Architecture (A), Topology (T) and Homologous superfamily (H). Class is determined according to the secondary structure composition and packing within the structure. Three major classes are recognized; mainly-alpha, mainly-beta and alpha–beta. Architecture describes the overall shape of the domain structure as determined by the orientations of the secondary structures but ignores the connectivity between the secondary structures. It is currently assigned manually using a simple description of the secondary structure arrangement e.g. barrel or 3-layer sandwich. Topology indicates that structure are grouped according to whether they share the same topology or fold in the core of the domain, that is, if they share the same overall shape and connectivity of the secondary structures in the domain core. Homologous superfamily groups together protein domains which are thought to share a common ancestor and can therefore be described as homologous. Similarities are identified either by high sequence identity or structure comparison using SSAP. Boundaries and assignments for each protein domain are determined using a combination of automated and manual procedures which include computational techniques, empirical and statistical evidence, literature review and expert analysis. Generally if a given protein chain has sufficiently high sequence identity and structural similarity (i.e. 80% sequence identity, SSAP score ≥80) with a chain that has previously been chopped, the domain boundary assignment is performed automatically by inheriting the boundaries from the other chain (ChopClose). Otherwise, the domain boundaries are assigned manually, based on an analysis of results derived from a range of algorithms which include structure based methods [CATHEDRAL, SSAP, DETECTIVE (Swindells, 1995)], PUU (Holm and Sander, 1994), DOMAK (Siddiqui and Barton, 1995), sequence based methods (Profile HMMs) and relevant literature.

How to improve mammary transgene expression?

We suspect that it is not necessary to consider codon usage optimization when targeting a human gene to express in the animal mammary gland. So we investigated the codon usage pattern between mammary gland and other tissues. Significant differences were found between mammary gland with heart and pancreas tissues both in human and mouse. However, no significant correlation was found between expression levels and codon usage of recombinant human proteins expressed in the milk of transgenic animals. This may indicate that even though a human gene shares a similar codon usage with a mammary gland specific gene, especially milk protein genes, does not guarantee an effective expression in the mammary gland. In contrast, those proteins which share a similar domain with the four caseins are capable of achieving higher expression levels in animal mammary gland. We suppose that the tertiary structure of a recombinant protein adapts to the synthesis and secretion process of milk proteins especially caseins may permit it to be efficiently expressed in animal mammary gland.

In the secretory epithelial cell of mammary gland, milk protein precursors are assembled on the ribosomes of the highly developed rough endoplasmic reticulum (ER). All milk proteins have conserved secretory signal peptide sequences, which lead the growing nascent peptides to insert into the lumen of the ER. The proteins are then transported to the Golgi apparatus. The caseins then gradually intercalate with each other, calcium and phosphate to form a submicellar structures which lead to the formation of casein micelles, finally secreted by reverse pinocytosis (Farrell et al. 2006). Protein folding in the ER is monitored by ER quality control (ERQC) mechanisms. Proteins that pass ERQC criteria traffic to their final destinations through the secretory pathway, whereas non-native and unassembled subunits of multimeric proteins are degraded by the ER-associated degradation (ERAD) pathway (Vembar and Brodsky 2008). Overall, the environment of the ER lumen would be conducive to the proper casein-casein association, which helps them to escape ERAD and move onto the Golgi for processing and secretion. Thus the recombinant proteins as SERPINA1, SERPINC1, SERPING1 and BCHE, which have compact spherical structures composed of mainly alpha beta, 2-lalyer or 3-layer sandwich like domains, presumably form self-association or interact with caseins through the conserved structural elements, and escape the ERAD, and are efficiently transported to the Golgi apparatus to assemble micelles, and ultimately efficiently secreted into milk, lead to a high expression level in the transgenic milk. In contrast, AFP, CAT, FIX, IL2, NGF, and tPA all have a mainly alpha or beta barrel based domain which is quite different from casein (Supplementary Fig. 10). They may not interact with caseins properly and are aggregated to evoke the ERAD, thus fail to traffic to the Golgi apparatus, and ultimate lead to less efficient expression in the milk of transgenic animals.

Today it is still difficult to exactly predict the expression efficiency of one transgenic animal bioreactor. Because the expression efficiency of mammary transgene relies on a series of complex molecular regulation and cellular process. And it may be animal species dependent. Protein tertiary structure may be an important factor affecting the expression of animal mammary transgene. We doubt this is an absolute factor but, for example, for those proteins failing to secrete into transgenic milk even after transcriptional optimization, we might need to pay more attention to their tertiary structures. We may need to generate a group of elaborately designed gene targeting mice expressing structural distinct proteins under similar transcriptional regulation to verify this hypothesis. Furthermore, if for mammary transgenes encoding proteins that are structurally distinct from caseins such that they may pass through the ER/Golgi-dependent classical secretion pathway inefficiently, raises engineering the non-classical secretary pathway (He et al. 2008a, b; Nickel 2003) as an intriguing option.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Acknowledgments

This work was supported by National S&T Major Project of China (grant no. 2008ZX08006-005).

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Footnotes

Zuyong He and Yiqiang Zhao contribute equally to this work.

References

  • Archer JS, Kennan WS, Gould MN, Bremel RD. Human growth hormone (hGH) secretion in milk of goats after direct transfer of the hGH gene into the mammary gland by using replication-defective retrovirus vectors. Proc Natl Acad Sci USA. 1994;91:6840–6844. doi: 10.1073/pnas.91.15.6840. [PubMed] [Cross Ref]
  • Baguisi A, Behboodi E, Melican DT, Pollock JS, Destrempes MM, Cammuso C, Williams JL, Nims SD, Porter CA, Midura P, Palacios MJ, Ayres SL, Denniston RS, Hayes ML, Ziomek CA, Meade HM, Godke RA, Gavin WG, Overstrom EW, Echelard Y. Production of goats by somatic cell nuclear transfer. Nat Biotechnol. 1999;17:456–461. doi: 10.1038/8632. [PubMed] [Cross Ref]
  • Baldassarre H, Hockley DK, Dore M, Brochu E, Hakier B, Zhao X, Bordignon V. Lactation performance of transgenic goats expressing recombinant human butyryl-cholinesterase in the milk. Transgenic Res. 2008;17:73–84. doi: 10.1007/s11248-007-9137-4. [PubMed] [Cross Ref]
  • Bijvoet AG, Kroos MA, Pieper FR, Vliet M, Boer HA, Ploeg AT, Verbeet MP, Reuser AJ. Recombinant human acid alpha-glucosidase: high level production in mouse milk, biochemical characteristics, correction of enzyme deficiency in GSDII KO mice. Hum Mol Genet. 1998;7:1815–1824. doi: 10.1093/hmg/7.11.1815. [PubMed] [Cross Ref]
  • Bijvoet AG, Hirtum H, Kroos MA, Kamp EH, Schoneveld O, Visser P, Brakenhoff JP, Weggeman M, Corven EJ, Ploeg AT, Reuser AJ. Human acid alpha-glucosidase from rabbit milk has therapeutic effect in mice with glycogen storage disease type II. Hum Mol Genet. 1999;8:2145–2153. doi: 10.1093/hmg/8.12.2145. [PubMed] [Cross Ref]
  • Bosze Z, Baranyi M, Whitelaw CB. Producing recombinant human milk proteins in the milk of livestock species. Adv Exp Med Biol. 2008;606:357–393. doi: 10.1007/978-0-387-74087-4_15. [PubMed] [Cross Ref]
  • Brem G, Hartl P, Besenfelder U, Wolf E, Zinovieva N, Pfaller R. Expression of synthetic cDNA sequences encoding human insulin-like growth factor-1 (IGF-1) in the mammary gland of transgenic rabbits. Gene. 1994;149:351–355. doi: 10.1016/0378-1119(94)90175-9. [PubMed] [Cross Ref]
  • Buhler TA, Bruyere T, Went DF, Stranzinger G, Burki K. Rabbit beta-casein promoter directs secretion of human interleukin-2 into the milk of transgenic rabbits. Biotechnology (N Y) 1990;8:140–143. doi: 10.1038/nbt0290-140. [PubMed] [Cross Ref]
  • Butler SP, Cott K, Subrumanian A, Gwazduaskas FC, Velander WH. Current progress in the production of recombinant human fibrinogen in the milk of transgenic animals. Thromb Haemost. 1997;78:537–542. [PubMed]
  • Christa L, Pauloin A, Simon MT, Stinnakre MG, Fontaine ML, Delpal S, Ollivier-Bousquet M, Brechot C, Devinoy E. High expression of the human hepatocarcinoma-intestine-pancreas/pancreatic-associated protein (HIP/PAP) gene in the mammary gland of lactating transgenic mice. Secretion into the milk and purification of the HIP/PAP lectin. Eur J Biochem. 2000;267:1665–1671. doi: 10.1046/j.1432-1327.2000.01159.x. [PubMed] [Cross Ref]
  • Clark AJ. The mammary gland as a bioreactor: expression, processing, and production of recombinant proteins. J Mammary Gland Biol Neoplasia. 1998;3:337–350. doi: 10.1023/A:1018723712996. [PubMed] [Cross Ref]
  • Coulibaly S, Besenfelder U, Fleischmann M, Zinovieva N, Grossmann A, Wozny M, Bartke I, Togel M, Muller M, Brem G. Human nerve growth factor beta (hNGF-beta): mammary gland specific expression and production in transgenic rabbits. FEBS Lett. 1999;444:111–116. doi: 10.1016/S0014-5793(98)01728-1. [PubMed] [Cross Ref]
  • Dittmar KA, Goodenbour JM, Pan T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2006;2:e221. doi: 10.1371/journal.pgen.0020221. [PubMed] [Cross Ref]
  • Dragin S, Chrastinova L, Makarevich A, Chrenek P. Production of recombinant human protein C in the milk of transgenic rabbits from the F3 generation. Folia Biol (Krakow) 2005;53:129–132. doi: 10.3409/173491605775142684. [PubMed] [Cross Ref]
  • Ebert KM, Selgrath JP, DiTullio P, Denman J, Smith TE, Memon MA, Schindler JE, Monastersky GM, Vitale JA, Gordon K. Transgenic production of a variant of human tissue-type plasminogen activator in goat milk: generation of transgenic goats and analysis of expression. Biotechnology (N Y) 1991;9:835–838. doi: 10.1038/nbt0991-835. [PubMed] [Cross Ref]
  • Ebert KM, DiTullio P, Barry CA, Schindler JE, Ayres SL, Smith TE, Pellerin LJ, Meade HM, Denman J, Roberts B. Induction of human tissue plasminogen activator in the mammary gland of transgenic goats. Biotechnology (N Y) 1994;12:699–702. doi: 10.1038/nbt0794-699. [PubMed] [Cross Ref]
  • Farrell HM, Malin EL, Brown EM, Qi PX. Casein micelle structure: what can be learned from milk synthesis and structural biology? Curr Opinion Colloid Inter Sci. 2006;11:135–147. doi: 10.1016/j.cocis.2005.11.005. [Cross Ref]
  • Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004;22:346–353. doi: 10.1016/j.tibtech.2004.04.006. [PubMed] [Cross Ref]
  • Han ZS, Li QW, Zhang ZY, Xiao B, Gao DW, Wu SY, Li J, Zhao HW, Jiang ZL, Hu JH. High-level expression of human lactoferrin in the milk of goats by using replication-defective adenoviral vectors. Protein Expr Purif. 2007;53:225–231. doi: 10.1016/j.pep.2006.11.019. [PubMed] [Cross Ref]
  • He ZY, Sun XZ, Mei G, Yu SL, Li N. Nonclassical secretion of human catalase on the surface of CHO cells is more efficient than classical secretion. Cell Biol Int. 2008;32:367–373. doi: 10.1016/j.cellbi.2007.12.003. [PubMed] [Cross Ref]
  • He Z, Yu S, Mei G, Zheng M, Wang M, Dai Y, Tang B, Li N. Maternally transmitted milk containing recombinant human catalase provides protection against oxidation for mouse offspring during lactation. Free Radic Biol Med. 2008;45:1135–1142. doi: 10.1016/j.freeradbiomed.2008.07.019. [PubMed] [Cross Ref]
  • Holm L, Sander C. Parser for protein folding units. Proteins. 1994;19:256–268. doi: 10.1002/prot.340190309. [PubMed] [Cross Ref]
  • Houdebine LM. Transgenic animal bioreactors. Transgenic Res. 2000;9:305–320. doi: 10.1023/A:1008934912555. [PubMed] [Cross Ref]
  • Houdebine LM. Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis. 2009;32:107–121. doi: 10.1016/j.cimid.2007.11.005. [PubMed] [Cross Ref]
  • Hsiao LL, Dangond F, Yoshida T, Hong R, Jensen RV, Misra J, Dillon W, Lee KF, Clark KE, Haverty P, Weng Z, Mutter GL, Frosch MP, Macdonald ME, Milford EL, Crum CP, Bueno R, Pratt RE, Mahadevappa M, Warrington JA, Stephanopoulos G, Stephanopoulos G, Gullans SR. A compendium of gene expression in normal human tissues. Physiol Genomics. 2001;7:97–104. [PubMed]
  • Huang YJ, Huang Y, Baldassarre H, Wang B, Lazaris A, Leduc M, Bilodeau AS, Bellemare A, Cote M, Herskovits P, Touati M, Turcotte C, Valeanu L, Lemee N, Wilgus H, Begin I, Bhatia B, Rao K, Neveu N, Brochu E, Pierson J, Hockley DK, Cerasoli DM, Lenz DE, Karatzas CN, Langermann S. Recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning. Proc Natl Acad Sci USA. 2007;104:13603–13608. doi: 10.1073/pnas.0702756104. [PubMed] [Cross Ref]
  • Hyvonen P, Suojala L, Orro T, Haaranen J, Simola O, Rontved C, Pyorala S. Transgenic cows that produce recombinant human lactoferrin in milk are not protected from experimental Escherichia coli intramammary infection. Infect Immun. 2006;74:6206–6212. doi: 10.1128/IAI.00238-06. [PMC free article] [PubMed] [Cross Ref]
  • Jensen RG. Handbook of milk composition. San Diege: Academic press; 1995.
  • Kim SJ, Sohn BH, Jeong S, Pak KW, Park JS, Park IY, Lee TH, Choi YH, Lee CS, Han YM, Yu DY, Lee KK. High-level expression of human lactoferrin in milk of transgenic mice using genomic lactoferrin sequence. J Biochem. 1999;126:320–325. [PubMed]
  • Korhonen VP, Tolvanen M, Hyttinen JM, Uusi-Oukari M, Sinervirta R, Alhonen L, Jauhiainen M, Janne OA, Janne J. Expression of bovine beta-lactoglobulin/human erythropoietin fusion protein in the milk of transgenic mice and rabbits. Eur J Biochem. 1997;245:482–489. doi: 10.1111/j.1432-1033.1997.00482.x. [PubMed] [Cross Ref]
  • Krimpenfort P, Rademakers A, Eyestone W, van der Schans A, van den Broek S, Kooiman P, Kootwijk E, Platenburg G, Pieper F, Strijker R et al. (1991) Generation of transgenic dairy cattle using ‘in vitro’ embryo production. Biotechnology (N Y) 9:844–847. doi: 10.1038/nbt0991-844 [PubMed]
  • Lee CS, Kim K, Yu DY, Lee KK. An efficient expression of human growth hormone (hGH) in the milk of transgenic mice using rat beta-casein/hGH fusion genes. Appl Biochem Biotechnol. 1996;56:211–222. doi: 10.1007/BF02786953. [PubMed] [Cross Ref]
  • Li L, Shen W, Min L, Dong H, Sun Y, Pan Q. Human lactoferrin transgenic rabbits produced efficiently using dimethylsulfoxide-sperm-mediated gene transfer. Reprod Fertil Dev. 2006;18:689–695. doi: 10.1071/RD06001. [PubMed] [Cross Ref]
  • Liang S, Li Y, Be X, Howes S, Liu W. Detecting and profiling tissue-selective genes. Physiol Genomics. 2006;26:158–162. doi: 10.1152/physiolgenomics.00313.2005. [PubMed] [Cross Ref]
  • Limonta JM, Castro FO, Martinez R, Puentes P, Ramos B, Aguilar A, Lleonart RL, la Fuente J. Transgenic rabbits as bioreactors for the production of human growth hormone. J Biotechnol. 1995;40:49–58. doi: 10.1016/0168-1656(95)00026-M. [PubMed] [Cross Ref]
  • Lindsay M, Gil GC, Cadiz A, Velander WH, Zhang C, Cott KE. Purification of recombinant DNA-derived factor IX produced in transgenic pig milk and fractionation of active and inactive subpopulations. J Chromatogr A. 2004;1026:149–157. doi: 10.1016/j.chroma.2003.11.006. [PubMed] [Cross Ref]
  • Liu Z, Zhao C, Fan B, Dai Y, Zhao Z, Wang L, Zheng M, Feng J, Chen Y, Duan Y, Li N. Variable expression of human lactoferrin gene in mice milk driven by its 90 KB upstream flanking sequences. Anim Biotechnol. 2004;15:21–31. doi: 10.1081/ABIO-120029810. [PubMed] [Cross Ref]
  • Massoud M, Attal J, Thepot D, Pointu H, Stinnakre MG, Theron MC, Lopez C, Houdebine LM. The deleterious effects of human erythropoietin gene driven by the rabbit whey acidic protein gene promoter in transgenic rabbits. Reprod Nutr Dev. 1996;36:555–563. doi: 10.1051/rnd:19960511. [PubMed] [Cross Ref]
  • McKee C, Gibson A, Dalrymple M, Emslie L, Garner I, Cottingham I. Production of biologically active salmon calcitonin in the milk of transgenic rabbits. Nat Biotechnol. 1998;16:647–651. doi: 10.1038/nbt0798-647. [PubMed] [Cross Ref]
  • Monaco MH, Gronlund DE, Bleck GT, Hurley WL, Wheeler MB, Donovan SM. Mammary specific transgenic over-expression of insulin-like growth factor-I (IGF-I) increases pig milk IGF-I and IGF binding proteins, with no effect on milk composition or yield. Transgenic Res. 2005;14:761–773. doi: 10.1007/s11248-005-7219-8. [PubMed] [Cross Ref]
  • Nickel W. The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem. 2003;270:2109–2119. doi: 10.1046/j.1432-1033.2003.03577.x. [PubMed] [Cross Ref]
  • Niemann H, Halter R, Carnwath JW, Herrmann D, Lemme E, Paul D (1999) Expression of human blood clotting factor VIII in the mammary gland of transgenic sheep. Transgenic Res 8:237–247. doi: 10.1023/A:1008999622117 [PubMed]
  • Paleyanda RK, Velander WH, Lee TK, Scandella DH, Gwazdauskas FC, Knight JW, Hoyer LW, Drohan WN, Lubon H. Transgenic pigs produce functional human factor VIII in milk. Nat Biotechnol. 1997;15:971–975. doi: 10.1038/nbt1097-971. [PubMed] [Cross Ref]
  • Parker MH, Birck-Wilson E, Allard G, Masiello N, Day M, Murphy KP, Paragas V, Silver S, Moody MD. Purification and characterization of a recombinant version of human alpha-fetoprotein expressed in the milk of transgenic goats. Protein Expr Purif. 2004;38:177–183. doi: 10.1016/j.pep.2004.07.007. [PubMed] [Cross Ref]
  • Platenburg GJ, Kootwijk EP, Kooiman PM, Woloshuk SL, Nuijens JH, Krimpenfort PJ, Pieper FR, Boer HA, Strijker R. Expression of human lactoferrin in milk of transgenic mice. Transgenic Res. 1994;3:99–108. doi: 10.1007/BF01974087. [PubMed] [Cross Ref]
  • Plotkin JB, Robins H, Levine AJ. Tissue-specific codon usage and the expression of human genes. Proc Natl Acad Sci USA. 2004;101:12588–12591. doi: 10.1073/pnas.0404957101. [PubMed] [Cross Ref]
  • Prunkard D, Cottingham I, Garner I, Bruce S, Dalrymple M, Lasser G, Bishop P, Foster D. High-level expression of recombinant human fibrinogen in the milk of transgenic mice. Nat Biotechnol. 1996;14:867–871. doi: 10.1038/nbt0796-867. [PubMed] [Cross Ref]
  • Riego E, Limonta J, Aguilar A, Perez A, Armas R, Solano R, Ramos B, Castro FO, la Fuente J. Production of transgenic mice and rabbits that carry and express the human tissue plasminogen activator cDNA under the control of a bovine alpha S1 casein promoter. Theriogenology. 1993;39:1173–1185. doi: 10.1016/0093-691X(93)90015-W. [PubMed] [Cross Ref]
  • Saito-Hisaminato A, Katagiri T, Kakiuchi S, Nakamura T, Tsunoda T, Nakamura Y. Genome-wide profiling of gene expression in 29 normal human tissues with a cDNA microarray. DNA Res. 2002;9:35–45. doi: 10.1093/dnares/9.2.35. [PubMed] [Cross Ref]
  • Salamone D, Baranao L, Santos C, Bussmann L, Artuso J, Werning C, Prync A, Carbonetto C, Dabsys S, Munar C, Salaberry R, Berra G, Berra I, Fernandez N, Papouchado M, Foti M, Judewicz N, Mujica I, Munoz L, Alvarez SF, Gonzalez E, Zimmermann J, Criscuolo M, Melo C. High level expression of bioactive recombinant human growth hormone in the milk of a cloned transgenic cow. J Biotechnol. 2006;124:469–472. doi: 10.1016/j.jbiotec.2006.01.005. [PubMed] [Cross Ref]
  • Sanchez O, Toledo JR, Rodriguez MP, Castro FO. Adenoviral vector mediates high expression levels of human growth hormone in the milk of mice and goats. J Biotechnol. 2004;114:89–97. doi: 10.1016/j.jbiotec.2004.06.009. [PubMed] [Cross Ref]
  • Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KH. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science. 1997;278:2130–2133. doi: 10.1126/science.278.5346.2130. [PubMed] [Cross Ref]
  • Shani M, Barash I, Nathan M, Ricca G, Searfoss GH, Dekel I, Faerman A, Givol D, Hurwitz DR. Expression of human serum albumin in the milk of transgenic mice. Transgenic Res. 1992;1:195–208. doi: 10.1007/BF02524750. [PubMed] [Cross Ref]
  • Shyamsundar R, Kim YH, Higgins JP, Montgomery K, Jorden M, Sethuraman A, Rijn M, Botstein D, Brown PO, Pollack JR. A DNA microarray survey of gene expression in normal human tissues. Genome Biol. 2005;6:R22. doi: 10.1186/gb-2005-6-3-r22. [PMC free article] [PubMed] [Cross Ref]
  • Siddiqui AS, Barton GJ. Continuous and discontinuous domains: an algorithm for the automatic generation of reliable protein domain definitions. Protein Sci. 1995;4:872–884. doi: 10.1002/pro.5560040507. [PubMed] [Cross Ref]
  • Simons JP, McClenaghan M, Clark AJ. Alteration of the quality of milk by expression of sheep beta-lactoglobulin in transgenic mice. Nature. 1987;328:530–532. doi: 10.1038/328530a0. [PubMed] [Cross Ref]
  • Stromqvist M, Tornell J, Edlund M, Edlund A, Johansson T, Lindgren K, Lundberg L, Hansson L. Recombinant human bile salt-stimulated lipase: an example of defective O-glycosylation of a protein produced in milk of transgenic mice. Transgenic Res. 1996;5:475–485. doi: 10.1007/BF01980213. [PubMed] [Cross Ref]
  • Stromqvist M, Houdebine M, Andersson JO, Edlund A, Johansson T, Viglietta C, Puissant C, Hansson L. Recombinant human extracellular superoxide dismutase produced in milk of transgenic rabbits. Transgenic Res. 1997;6:271–278. doi: 10.1023/A:1018406611380. [PubMed] [Cross Ref]
  • Swindells MB. A procedure for detecting structural domains in proteins. Protein Sci. 1995;4:103–112. doi: 10.1002/pro.5560040113. [PubMed] [Cross Ref]
  • Tang B, Yu S, Zheng M, Ding F, Zhao R, Zhao J, Dai Y, Li N. High level expression of a functional human/mouse chimeric anti-CD20 monoclonal antibody in milk of transgenic mice. Transgenic Res. 2008;17:727–732. doi: 10.1007/s11248-007-9162-3. [PubMed] [Cross Ref]
  • Toledo JR, Sanchez O, Segui RM, Garcia G, Montanez M, Zamora PA, Rodriguez MP, Cremata JA. High expression level of recombinant human erythropoietin in the milk of non-transgenic goats. J Biotechnol. 2006;123:225–235. doi: 10.1016/j.jbiotec.2005.10.019. [PubMed] [Cross Ref]
  • Berkel PH, Welling MM, Geerts M, Veen HA, Ravensbergen B, Salaheddine M, Pauwels EK, Pieper F, Nuijens JH, Nibbering PH. Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat Biotechnol. 2002;20:484–487. doi: 10.1038/nbt0502-484. [PubMed] [Cross Ref]
  • Cott KE, Lubon H, Gwazdauskas FC, Knight J, Drohan WN, Velander WH. Recombinant human protein C expression in the milk of transgenic pigs and the effect on endogenous milk immunoglobulin and transferrin levels. Transgenic Res. 2001;10:43–51. doi: 10.1023/A:1008963817646. [PubMed] [Cross Ref]
  • Vembar SS, Brodsky JL. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol. 2008;9:944–957. doi: 10.1038/nrm2546. [PMC free article] [PubMed] [Cross Ref]
  • Wang J, Yang P, Tang B, Sun X, Zhang R, Guo C, Gong G, Liu Y, Li R, Zhang L, Dai Y, Li N. Expression and characterization of bioactive recombinant human alpha-lactalbumin in the milk of transgenic cloned cows. J Dairy Sci. 2008;91:4466–4476. doi: 10.3168/jds.2008-1189. [PubMed] [Cross Ref]
  • Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M. Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol Genomics. 2000;2:143–147. [PubMed]
  • Whitelaw CB, Archibald AL, et al. Targeting expression to the mammary gland: intronic sequences can enhance the efficiency of gene expression in transgenic mice. Transgenic Res. 1991;1(1):3–13. doi: 10.1007/BF02512991. [PubMed] [Cross Ref]
  • Wright G, Carver A, Cottom D, Reeves D, Scott A, Simons P, Wilmut I, Garner I, Colman A (1991) A. High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Biotechnology (N Y) 9:830–834. doi: 10.1038/nbt0991-830 [PubMed]
  • Yang P, Wang J, Gong G, Sun X, Zhang R, Du Z, Liu Y, Li R, Ding F, Tang B, Dai Y, Li N. Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin. PLoS ONE. 2008;3:e3453. doi: 10.1371/journal.pone.0003453. [PMC free article] [PubMed] [Cross Ref]
  • Yu Z, Meng Q, Yu H, Fan B, Yu S, Fei J, Wang L, Dai Y, Li N. Expression and bioactivity of recombinant human lysozyme in the milk of transgenic mice. J Dairy Sci. 2006;89:2911–2918. doi: 10.3168/jds.S0022-0302(06)72563-2. [PubMed] [Cross Ref]
  • Zavadskaia ES, Zakharova ES, Kadulin SG, Kibardin AV, Kiselev SL, Gnuchev NV. Production of recombinant endostatin in milk from transgenic mice. Genetika. 2001;37:1207–1212. [PubMed]
  • Zhang J, Li L, Cai Y, Xu X, Chen J, Wu Y, Yu H, Yu G, Liu S, Zhang A, Chen J, Cheng G. Expression of active recombinant human lactoferrin in the milk of transgenic goats. Protein Expr Purif. 2008;57:127–135. doi: 10.1016/j.pep.2007.10.015. [PubMed] [Cross Ref]

Articles from Springer Open Choice are provided here courtesy of Springer