PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of nihpaAbout Author manuscriptsSubmit a manuscriptHHS Public Access; Author Manuscript; Accepted for publication in peer reviewed journal;
 
Anesthesiology. Author manuscript; available in PMC 2010 September 1.
Published in final edited form as:
PMCID: PMC2891304
NIHMSID: NIHMS125716

Involvement of Erythropoietin in Retinal Ischemic Preconditioning

Abstract

Background

The purpose of this study was to examine the role of erythropoietin in retinal ischemic preconditioning (IPC).

Methods

Rats were subjected to retinal ischemia after IPC. Electroretinography assessed functional recovery after ischemia; retinal sections were examined to determine loss of retinal ganglion cells, and Terminal Deoxynucleotidyl Transferase Mediated dUTP Nick End Labeling was used to assess apoptosis. Levels of downstream mediators were measured in retinal homogenates by Western blotting. To assess the involvement of erythropoietin in IPC, we measured levels of erythropoietin and its receptor (EPO-R) in retinal homogenates following IPC, using Western blotting. To examine erythropoietin’s role in IPC, we studied the impact of blocking erythropoietin via intravitreal injection of soluble EPO-R (sEPO-R) before IPC.

Results

Erythropoietin levels did not change following IPC, but EPO-R increased. Intravitreal injection of sEPO-R significantly attenuated both the functional and histological neuroprotection produced by IPC in comparison to control injection of denatured sEPO-R. Apoptotic damage after ischemia was enhanced in the sEPO-R treated retinas as indicated by fluorescent Terminal Deoxynucleotidyl Transferase Mediated dUTP Nick End Labeling. Phosphorylated extracellular-signal-regulated kinase (ERK) and heat shock protein 27 (Hsp27), but not protein kinase B (Akt), upregulated in denatured sEPO-R treated retinae, were attenuated in eyes injected with sEPO-R.

Conclusions

These results indicate that EPO-R upregulation is a critical component of the functional, histological, and anti-apoptotic protective effect of ischemic preconditioning on ischemia in the retina and that several downstream effectors may be involved in the neuroprotective actions of erythropoietin.

Introduction

Retinal ischemia is associated with vascular diseases that may result in significant visual loss. The retina’s blood and oxygen supply is decreased with atherosclerosis, diabetic retinopathy, central retinal artery or vein occlusion, and sickle cell retinopathy. An endogenous protective capacity in the rat retina, produced by ischemic preconditioning (IPC) can induce tolerance to retinal ischemia. 1 IPC, a brief period of ischemia, stimulates endogenous mechanisms that provide protection in the event of subsequent ischemia. IPC, and the subsequent ischemia, did not affect the contralateral retina. 2,3 Enhanced knowledge of the mechanisms of IPC could lead to therapeutic strategies for retinal ischemic injury, or ischemia in other central nervous system regions.24 Earlier studies from our laboratory, some of which have been confirmed by others, indicated the roles in this neuroprotection of adenosine, protein kinase C, heat shock protein 27 (HSP27), reactive oxygen species, nitric oxide synthase, the opening of mitochondrial ATP-sensitive K+ channels, mitogen-activated protein kinases, and decreased retinal cell apoptosis.2,3,59 Despite these prior studies, the molecular basis for IPC remains incomplete.

A potential signaling pathway in retinal IPC is the hematopoietic cytokine erythropoietin. Intriguingly, erythropoietin, in addition to its hematopoietic effects, protects neurons from ischemic damage, and may decrease neuronal injury in stroke.10 We previously demonstrated that retinal ischemia increased retinal protein levels of erythropoietin, and decreased levels of erythropoietin receptor (EPO-R). Systemic injection of erythropoietin protected retinal neurons from ischemic injury, while blockade of erythropoietin by intravitreal administration of soluble EPO-R (sEPO-R) worsened recovery. 11 In mouse or rat models, erythropoietin protected against light-induced retinal injury and axotomy-induced neurodegeneration. 1216 Watanabe 17 found elevated erythropoietin levels in the vitreous in diabetic retinopathy, and Morita 18 demonstrated that hyperoxia-normoxia in a murine retinopathy of prematurity model induced neovascularization in wild-type, but not in hypoxia-inducible factor-1α-like factor, kD/kD mice, where erythropoietin levels were decreased.

In this study we examined the hypothesis that erythropoietin was an essential signaling molecule in retinal IPC via production of increased levels of erythropoietin. We examined potential downstream effectors to erythropoietin in this ischemic neuroprotection.

Materials and Methods

Ischemia methodology

Procedures 7,8 conformed to the Association for Research in Vision and Ophthalmology Resolution on the Use of Animals in Research and were approved by our Animal Care Committee (Division of Biological Sciences, University of Chicago, Chicago, Illinois). Sprague–Dawley rats (200–250 gm) from Harlan (Indianapolis, IN), were maintained on a 12 h on/12 h off light cycle. Rats were anesthetized with chloral hydrate, 450 mg/kg intraperitoneal. For baseline and postischemic follow–up electroretinograms, rats were injected intraperitoneal with ketamine (Parke–Davis, Morris Plains, NJ) 35 mg/kg, and xylazine (Miles, Shawnee Mission, KS) 5 mg/kg. Corneal analgesia was achieved with 0.5% proparacaine (Allergan, Irvine, CA). Pupils were dilated with 0.5% tropicamide (Alcon, Ft Worth, TX) and cyclomydril (0.2% cyclopentolate HCl and 1% phenylephrine HCl, Alcon). Body temperature was maintained at 36.5–37.0 C with a servo–controlled heating blanket (Harvard Apparatus, Natick, MA).

For preconditioning, intraocular pressure was increased to 160 mm Hg for 8 min using a pressurized 1000-ml plastic bag of sterile normal saline (Baxter, North Chicago, IL) connected to a 30-g needle in the center of the eye’s anterior chamber. For ischemia, performed 24 h after preconditioning, the intraocular pressure was increased to 110 mm Hg for 45 min.9

Electroretinography

Procedures have been described in detail previously.7,8 In brief, the scotopic electroretinogram was recorded from rats dark-adapted for at least 1 h, by using platinum needle electroencephalogram electrodes (Grass, Providence, RI) in contact with the corneal surfaces of both eyes. Responses to 10-μs white light flashes from a Nicolet Ganzfeld (Madison, WI) with the rat’s head centered 6 in away were recorded on a Nicolet Spirit 486. Data are the average of three flashes at least 2 min apart. Wave amplitudes 7 d after ischemia were measured and reported as a percentage of the baseline, non–ischemic wave amplitude.

Western blotting

Procedures were those we used in previous studies. 8,9,11 Briefly, retinas were solubilized in 9 M urea, 4% Nonidet P-40 and 2% 2-mercaptoethanol (pH 9.5). Protease inhibitor cocktail (P8340; Sigma, St Louis, MO) consisting of 4-(2-aminoethyl) benzenesulfonyl fluoride, pepstatin A, bestatin, leupeptin, and E-64 prevented protease activity.

Equal amounts of protein per lane (40 μg) were loaded onto gels for SDS-PAGE (4%–20% or 16%; Invitrogen, Carlsbad, CA) or Nu-PAGE 4–12% bis-Tris gels (Invitrogen). Proteins were electroblotted to polyvinylidene difluoride (Immobilon-P; Millipore, Bedford, MA). Nonspecific binding was blocked with 5% nonfat dry milk in Tween-Tris-buffered saline. Membranes were incubated overnight at 4°C with rabbit polyclonal anti-erythropoietin (1:2000; Santa Cruz Biotechnology, Santa Cruz, CA), rabbit polyclonal anti-EPO-R (1:500; Santa Cruz), rabbit polyclonal anti-phosphorylated Ser82 HSP27 (1:300; Upstate, Lake Placid, NY), rabbit polyclonal anti-HSP25 (1:500; Assay Design, Ann Arbor, MI), rabbit polyclonal anti-phosphorylated Thr202/Tyr204 extracellular-signal-regulated kinase (ERK, 1:2000; Cell Signaling, Danvers, MA), rabbit polyclonal anti-ERK (1:1000; Cell Signaling), rabbit polyclonal anti-phosphorylated Ser473 protein kinase B (Akt, 1:300; Cell Signaling), and rabbit polyclonal anti-Akt (1:500; Cell Signaling).

Anti-rabbit horseradish peroxidase-conjugated (goat IgG; Jackson Immuno-Research, West Grove, PA) secondary antibody was applied at 1:20,000. Chemiluminescence was developed with Super Signal West Pico (Pierce, Rockford, IL). Protein bands were digitally imaged with a CCDBIO 16SC Imaging System (Hitachi Genetic Systems/MiraiBio, Alameda, CA), and semi-quantitated by densitometry (Gene Snap and Gene Tools; Hitachi). Equal protein loading was checked by Ponceau S red staining and by immunoblotting with rabbit polyclonal anti-opsin (1:250; Santa Cruz Biotechnology), or with anti-total Akt, anti-total ERK, or anti-HSP25 antibodies.

Peptide Competition Assay

To confirm specificity, EPO-R primary antibody was incubated overnight with either EPO-R blocking peptide (50 X vs antibody by weight; Santa Cruz) in phosphate-buffered saline (PBS), or PBS alone. Supernatants of the mixtures, collected after centrifugation (10,000 rpm for 15 min at 4°C), were then brought up to a volume of 2 ml in 5% dry milk in PBS for subsequent Western blot analysis on whole retinal homogenates.

Fluorescent Terminal Deoxynucleotidyl Transferase Mediated dUTP Nick End Labeling (TUNEL) and Imaging

Fluorescent TUNEL was performed, and cells identified using a Fluorescein FragEL DNA Fragmentation Detection Kit (Calbiochem, La Jolla, CA) on 10-μm thick retinal cryosections as described previously.9,19 We utilized a fluorescence microscope (inverted Olympus IX81, Center Valley, PA), a Fast firewire Retiga EXi chilled CCD camera (QImaging, Pleasanton, CA), and a 40X oil lens. Excitation/dichroic/emission settings were 480/40 nm-505LP-535/30 nm for rhodamine, and 530–550 nm – 570DM-590LP for fluorescein.

Histology

Eyes enucleated on the seventh day after ischemia were immediately fixed in 4% paraformaldehyde in PBS for 48 h, transferred to buffered formalin for 24 h, and stored in PBS at 4°C. Paraffin-embedded 5 μm thick sections were stained with hematoxylin and eosin, examined by light microscopy, and retinal ganglion cell counts were quantified as described. 1,9,11,19

Studies

Whole retinal homogenates were collected 1, 6 and 24 h after IPC for Western blotting. To test the role of EPO-R in IPC, either 2 μl of 20 ng soluble EPO-R (R&D Systems, Minneapolis, MN) or 20 ng denatured soluble EPO-R (boiled for 30 min then allowed to cool to body temperature) was injected into the mid-vitreous 15 min prior to IPC, as described previously.11 Doses injected into the vitreous were estimated assuming an approximately 30-μl vitreous volume as determined from earlier experiments; thus the concentration after 2 μl injection was assumed to be diluted 15-fold.8 In addition, previous experiments indicated that this intravitreal dose of EPO-R was effective in blunting effects of EPO and was not toxic. 11 To examine the relationship between EPO and the downstream activated phosphorylated ERK, HSP27 and Akt, we injected denatured soluble EPO-R (dEPO-R) or soluble EPO-R (sEPO-R) into the vitreous 15 min before IPC, and removed retinas 24 h later, then examined them by Western blot.

Statistical analysis

Data (mean ± SEM) were analyzed as previously described, with ANOVA and post hoc t–testing using Stata version 6.0 (College Station, TX). 7,8 Results between paired eyes were compared using paired t tests, and between time-matched groups from different animals using an unpaired t test. P < 0.05 was used for statistical significance.

Results

IPC effects on erythropoietin and erythropoietin receptor protein levels

Ischemic preconditioning did not significantly change erythropoietin protein levels at 1 h (100 ± 5%; n = 4), 6 h (108 ± 14%; n = 4) and 24 h (96 ± 6%; n = 4) after IPC compared to normal paired-control eyes (fig. 1). However, IPC significantly increased the levels of EPO-R (fig. 2). Western blot analysis of EPO-R resulted in multiple bands confirmed to be EPO-R protein by peptide competition assay (fig. 2C). The 200 kD (139 ± 15%, p = 0.03; n = 7) and the 115 kD (127 ± 12%, p = 0.05; n = 7) EPO-R bands significantly increased at 24 h after IPC compared to normal paired-control eyes. There were no significant changes in the EPO-R protein levels at both 1 and 6 h after IPC.

Figure 1
Erythropoietin (EPO) protein levels in normal rat retina and retina after ischemic preconditioning (IPC). The levels in the contralateral, control, paired retinas were set to 100% (normalized) for comparison to the paired IPC retinae. A. Densitometric ...
Figure 2
Erythropoietin receptor (EPO-R) protein levels in normal rat retina and retina after IPC. The levels in the contralateral, control, paired retinas were set to 100% (normalized) for comparison to the paired IPC retinae. A. Densitometric analysis demonstrated ...

Soluble EPO-R blocks IPC

Intravitreal injection of sEPO-R 15 min prior to IPC significantly attenuated IPC neuroprotection (a-wave 31 ± 12%, p = 0.007 and b-wave 17 ± 7%, p = 0.006; n = 5; fig. 3) compared to the control intravitreal injection of dEPO-R (a-wave 86 ± 6% and b-wave 51 ± 7%; n = 12). Moreover, histological examination of retinal sections showed that sEPO-R significantly decreased retinal ganglion cell numbers (66.4 ± 11.2% of normal; p = 0.04; n = 3) while denatured sEPO-R did not (86.5 ± 17.6% of normal; n = 5; table 1). Fluorescent TUNEL showed that sEPO-R significantly increased apoptotic retinal ganglion cells in ischemic retina (10.7 ± 2.9% vs 1.7 ± 1.0% in normal; p = 0.03; n=4) while dEPO-R had no effect (ischemic retina 5.6 ± 2.4% versus 3.1 ± 2.4% in normal; p = 0.49; n = 4; fig. 4 and table 2).

Figure 3
Inhibition of ischemic preconditioning (IPC) neuroprotection by soluble erythropoietin receptor (EPO-R). A. Representative electroretinogram (ERG) traces for the normal and ischemic eyes 7 d after ischemia. B. Injection of 2 μl of soluble EPO-R ...
Figure 4
Fluorescent Terminal Deoxynucleotidyl Transferase Mediated dUTP Nick End Labeling (TUNEL) and the role of erythropoietin receptor (EPO-R) in apoptosis. Shown are representative images at 24 h after ischemia (with ischemic preconditioning, IPC 24 h earlier) ...
Table 1
Histological Determination of the Percentage of Cells (± s.e.m.) in the RGC Layer
Table 2
Percentage (± s.e.m.) of TUNEL Positive Cells in the Retinal Ganglion Cell Layer

EPO activates downstream effectors

We examined the activation of downstream proteins by injection of dEPO-R or sEPO-R 15 min before IPC. Western blot analysis of retina 24 h after IPC showed that phosphorylated ERK and HSP27, but not Akt, increased in dEPO-R but not in sEPO-R treated eyes (fig. 5). The 42 kD phosphorylated ERK (corrected for total ERK protein levels) significantly increased to 152 ± 19% of normal (p = 0.05; n = 3) with injection of dEPO-R prior to IPC compared to 98 ± 17% (p = 0.91; n = 4) for sEPO-R. The 44 kD phosphorylated ERK protein did not change (119 ± 10% of normal for dEPO-R and 105 ± 7% for sEPO-R). Phosphorylated HSP27 (corrected for HSP25 protein levels) significantly increased to 165 ± 11% of normal (p = 0.01; n = 3) with injection of dEPO-R prior to IPC compared to 92 ± 23% (p = 0.73; n = 4) for sEPO-R. The protein levels of phosphorylated Akt did not differ between the two treatment groups. Phosphorylated Akt protein levels (corrected for total Akt protein levels) significantly increased to 193 ± 11% of normal (p = 0.01; n = 3) with injection of dEPO-R prior to IPC, and the levels trended to increase to 204 ± 50% (p = 0.08; n = 4) for sEPO-R.

Figure 5
The effects of IPC on downstream proteins with and without blockade by sEPO-R. The levels in the contralateral, control, paired retinas were set to 100% (normalized) for comparison to the paired IPC retinae. A. Western blot analysis of ischemic retinas ...

Discussion

Our results show the role of erythropoietin and EPO-R in retinal neuroprotective pathways. We demonstrated that 1) EPO-R, but not erythropoietin, protein levels are increased with IPC; 2) soluble EPO-R attenuates the protective effects of IPC on retinal function, retinal ganglion cell loss, and apoptosis after ischemia; 3) activation of ERK and HSP27, potential neuroprotective pathways, occur downstream of upregulation of the EPO-R following ischemic preconditioning.

In the present study, no significant change in erythropoietin protein expression was observed after ischemic preconditioning and 1, 6, or 24 h of reperfusion. These findings contrast with prior studies in mouse retina and brain. In mouse retina, erythropoietin mRNA expression significantly increased after hypoxic preconditioning and persisted for at least one hour after reperfusion. 13 In mouse brain, erythropoietin mRNA significantly increased after hypoxic preconditioning and one h of reperfusion, returning to baseline by four hours of reperfusion. Erythropoietin protein levels were elevated at one hour after preconditioning and increased further by 48 h. 20 The contrasting results observed for erythropoietin protein after ischemic and hypoxic preconditioning may be related to differences in the two preconditioning models. Hypoxic preconditioning was performed for at least 5 h prior to reperfusion in both mouse studies, whereas ischemic preconditioning was only performed for eight min in our study. The molecular response to hypoxia involves the upregulation of hypoxia inducible factor-1, which regulates the transcription of hypoxia responsive genes including erythropoietin. Ischemic preconditioning is characterized in part by hypoxia, but other components of this model also may influence the expression of erythropoietin. Alternatively, hypoxic preconditioning may have a broader effect on a wider range of retinal cell types, whereas ischemic preconditioning may affect fewer retinal cells. For example, a change in erythropoietin expression in a select group of retinal cells types such as retinal ganglion cells, may not be detectable above baseline expression levels. Finally, the time course tested in the present study may not capture an increase in erythropoietin protein expression if it occurs after 24 h of reperfusion. However, in our previous studies, levels of multiple mediators of IPC were altered within the 24 h IPC time window. In the present study, we did not test the levels of erythropoietin mRNA, which would be a potentially more sensitive test. But measuring mRNA levels might also not be sensitive enough if the change occurs in a limited set of retinal cells.

We observed that EPO-R protein expression increased after ischemic preconditioning. In previous studies, several authors reported multiple protein bands with various EPO-R antibodies. In some instances, the presence of multiple bands appeared to be tissue-specific; multiple bands might be due to protein glycosylation or other post-translational modifications.21,22 In any event, the peptide competition experiment proved that the bands were all specific for EPO-R. While there are no previous studies that examined EPO-R mRNA and protein expression after preconditioning, several studies documented EPO-R upregulation following ischemia. In the mouse brain, EPO-R mRNA levels increased at 12 and 24 h following focal cerebral ischemia, and EPO-R protein levels were elevated after 24 h, peaking after three days. 23 In the rat retina, the same temporal induction of EPO-R protein was observed after ischemia as reported in mouse brain. 11 In neonatal rat brain, EPO-R protein expression was significantly increased at 6 and 12 h following focal cerebral ischemia. 24 Induction of EPO-R may play a key role in neuronal survival following ischemia, and may also contribute to the endogenous protective mechanisms activated by ischemic preconditioning. Upregulation of EPO-R may result in more available binding sites for endogenous erythropoietin, thereby increasing signaling through EPO-R and activation of downstream pathways that contribute to neuronal survival and protection. Based upon these previous studies, such a conclusion is both rational and biologically relevant, however, our present results have to be considered in light of the possibility that erythropoietin protein changed as well, but could not be detected.

Among the possible downstream mechanisms for action of erythropoietin are Akt, ERK, and HSP27. These proteins are intermediaries as well in ischemic preconditioning. Transgenic mice overexpressing erythropoietin were protected against ischemic injury after middle cerebral artery occlusion, with erythropoietin activating janus-activated kinase-2, ERK-1/-2, and Akt pathways in the ischemic brain. Retinal ganglion cells in these transgenic rats were also protected from degeneration following axotomy. 12,25 Upregulation of Akt was neuroprotective, by stabilizing mitochondrial function. 26

ERK, activated after ischemic preconditioning in the rat retina, 9 is a cell survival factor that is believed to operate in part by increasing Mn-superoxide dismutase.27 We showed that HSP27 was up-regulated after retinal ischemic preconditioning in a time course consistent with that of IPC neuroprotection, and upregulation by cobalt chloride protected rat retina from ischemic injury in vivo.6,28 HSP27 interacts with cytochrome c to negatively regulate cell death. 29 In a neonatal rat hypoxia-ischemia model, HSP27 was increased after administration of erythropoietin, and TUNEL positive cells had decreased HSP27, suggesting that HSP27 may be increased by erythropoietin. 30 Considering our present results, upregulation of EPO-R by IPC may lead to enhanced availability of erythropoietin to activate ERK, and HSP27, and enhance cell survival when the retina becomes ischemic. However, with no effect of sEPO-R on Akt activation after IPC in our model, it appears that there are other, erythropoietin -independent mechanisms that activate Akt.

Results of the present study demonstrate that EPO-R upregulation is a potential mechanism of ischemic preconditioning in the rat retina, with the neuroprotection afforded by erythropoietin involving activation of downstream proteins including ERK and HSP27.

Acknowledgments

Supported by National Institutes of Health (Rockville, Maryland) grants EY10343 (Dr. Roth), EY11253 (Dr. Rosenbaum), the Illinois Society for the Prevention of Blindness, Chicago, Illinois (Dr. Roth), and by the Office of Medical Education of the University of Chicago Pritzker School of Medicine, Chicago, Illinois (Ms. Hagevik and Mr. Hemmert). Jon W. Hemmert and Sarah Hagevik received Medical Student Research Fellowship Awards from the American Academy of Neurology (Minneapolis, Minnesota).

Footnotes

The study was selected for presentation as one of the Best Abstracts, Anesthesiology Editor’s Picks session at the Annual Meeting of the American Society of Anesthesiologists, October 20, 2008, Orlando, Florida.

References

1. Roth S, Li B, Rosenbaum PS, Gupta H, Goldstein IM, Maxwell KM, Gidday JM. Preconditioning provides complete protection against retinal ischemic injury in rats. Invest Ophthalmol Vis Sci. 1998;39:775–85. [PubMed]
2. Li B, Roth S. Retinal ischemic preconditioning in the rat: requirement for adenosine and repetitive induction. Invest Ophthalmol Vis Sci. 1999;40:1200–16. [PubMed]
3. Li B, Yang C, Rosenbaum DM, Roth S. Signal transduction mechanisms involved in ischemic preconditioning in the rat retina in vivo. Exp Eye Res. 2000;70:755–65. [PubMed]
4. Ettaiche M, Heurteaux C, Blondeau N, Borsotto M, Tinel N, Lazdunski M. ATP-sensitive potassium channels (KATP) in retina: a key role for delayed ischemic tolerance. Brain Res. 2001;890:118–29. [PubMed]
5. Dreixler JC, Shaikh AR, Shenoy SK, Shen Y, Roth S. Protein kinase C subtypes and retinal ischemic preconditioning. Exp Eye Res. 2008;87:300–11. [PMC free article] [PubMed]
6. Li Y, Roth S, Laser M, Ma JX, Crosson CE. Retinal preconditioning and the induction of heat-shock protein 27. Invest Ophthalmol Vis Science. 2003;44:1299–1304. [PubMed]
7. Roth S, Dreixler JC, Shaikh AR, Lee KH, Bindokas V. Mitochondrial potassium ATP channels and retinal ischemic preconditioning. Invest Ophthalmol Vis Sci. 2006;47:2114–24. [PMC free article] [PubMed]
8. Roth S, Shaikh AR, Hennelly MM, Li Q, Bindokas V, Graham CE. Mitogen-activated protein kinases and retinal ischemia. Invest Ophthalmol Vis Sci. 2003;44:5383–95. [PubMed]
9. Zhang C, Rosenbaum DM, Shaikh AR, Q L, Rosenbaum PS, Pelham DJ, Roth S. Ischemic preconditioning attenuates apoptosis following retinal ischemia in rats. Invest Ophthalmol Vis Sci. 2002;43:3059–66. [PubMed]
10. Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M, Rustenbeck H-H, Breiter N, Jacob S, Knerlich F, Bohn M, Poser W, Ruther E, Kochen M, Gefeller O, Gleiter C, Wessel TC, De Ryck M, Itri L, Prange H, Cerami A, Brines M, Siren A-L. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med. 2002;8:495–505. [PMC free article] [PubMed]
11. Junk AK, Mammis A, Savitz SI, Singh M, Roth S, Malhotra S, Rosenbaum PS, Cerami A, Brines M, Rosenbaum DM. Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury. Proc Natl Acad Sci USA. 2002;99:10659–64. [PubMed]
12. Kilic U, Kilic E, Soliz J, Bassetti CI, Gassmann M, Hermann DM. Erythropoietin protects from axotomy-induced degeneration of retinal ganglion cells by activating ERK-1/-2. FASEB J. 2005;19:249–51. [PubMed]
13. Grimm C, Wenzel A, Groszer M, Mayser H, Seeliger M, Samardzija M, Bauer C, Gassmann M, Reme CE. HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med. 2002;8:718–24. [PubMed]
14. Rex TS, Allocca M, Domenici L, Surace EM, Maguire AM, Lyubarsky A, Cellerino A, Bennett J, Auricchio A. Systemic but not intraocular Epo gene transfer protects the retina from light-and genetic-induced degeneration. J Am Soc Gene Ther. 2004;10:855–61. [PubMed]
15. Weishaupt JH, Rohde G, Polking E, Siren A-L, Ehrenreich H, Bahr M. Effect of erythropoietin axotomy-induced apoptosis in rat retinal ganglion cells. Invest Ophthalmol Vis Sci. 2004;45:1514–22. [PubMed]
16. Grimm C, Wenzel A, Stanescu D, Samardzija M, Hotop S, Groszer M, Naash M, Gassmann M, Reme C. Constitutive overexpression of human erythropoietin protects the mouse retina against induced but not inherited retinal degeneration. J Neurosci. 2004;24:5651–8. [PMC free article] [PubMed]
17. Watanabe D, Suzuma K, Matsui S, Kurimoto M, Kiryu J, Kita M, Suzuma I, Ohashi H, Ojima T, Murakami T, Kobayashi T, Masuda S, Nagao M, Yoshimura N, Takagi H. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med. 2005;353:782–92. [PubMed]
18. Morita M, Ohneda O, Yamashita T, Takahashi S, Suzuki N, Nakajima O, Kawauchi S, Ema M, Shibahara S, Udono T, Tomita K, Tamai M, Sogawa K, Yamamoto M, Fujii-Kuriyama Y. HLF/HIF-2alpha is a key factor in retinopathy of prematurity in association with erythropoietin. EMBO J. 2003;22:1134–46. [PubMed]
19. Singh M, Savitz SI, Hoque R, Rosenbaum PS, Roth S, Rosenbaum DM. Cell-specific caspase expression by different neuronal phenotypes in transient retinal ischemia. J Neurochem. 2001;77:466–75. [PubMed]
20. Prass K, Scharff A, Ruscher K, Lowl D, Muselmann C, Victorov I, Kapinya K, Dirnagl U, Meisel A. Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke. 2003;34:1981–6. [PubMed]
21. Fenjves ES, Ochoa MS, Cabrera O, Mendez AJ, Kenyon NS, Inverardi L, Ricordi C. Human, nonhuman primate, and rat pancreatic islets express erythropoietin receptors. Transplantation. 2003;75:1356–60. [PubMed]
22. Kirkeby A, van Beek J, Nielsen J, Leist M, Helboe L. Functional and immunochemical characterisation of different antibodies against the erythropoietin receptor. J Neurosci Methods. 2007;164:50–8. [PubMed]
23. Bernaudin M, Marti HH, Roussel S, Divoux D, Nouvelot A, MacKenzie ET, Petit E. A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metabol. 1999;19:643–51. [PubMed]
24. Wen TC, Rogido M, Genetta T, Sola A. Permanent focal cerebral ischemia activates erythropoietin receptor in the neonatal rat brain. Neurosci Lett. 2004;355:165–8. [PubMed]
25. Kilic E, Kilic U, Soliz J, Bassetti CL, Gassmann M, Hermann DM. Brain-derived erythropoietin protects from focal cerebral ischemia by dual activation of ERK-1/-2 and Akt pathways. FASEB J. 2005;19:2026–8. [PubMed]
26. Mullonkal CJ, Toledo-Pereyra LH. Akt in ischemia and reperfusion. J Invest Surg. 2007;20:195–203. [PubMed]
27. Scorziello A, Santillo M, Adornetto A, Dell’aversano C, Sirabella R, Damiano S, Canzoniero LMT, Renzo GFD, Annunziato L. NO-induced neuroprotection in ischemic preconditioning stimulates mitochondrial Mn-SOD activity and expression via Ras/ERK1/2 pathway. J Neurochem. 2007;103:1472–80. [PubMed]
28. Whitlock NA, Agarwal N, Ma J-X, Crosson CE. Hsp27 upregulation by HIF-1 signaling offers protection against retinal ischemia in rats. Invest Ophthalmol Vis Sci. 2005;46:1092–8. [PubMed]
29. Bruey JM, Ducasse C, Bonniaud P. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol. 2000;2:645–52. [PubMed]
30. Sun Y, Zhou C, Polk P, Nanda A, Zhang JH. Mechanisms of erythropoietin-induced brain protection in neonatal hypoxia-ischemia rat model. J Cereb Blood Flow Metabol. 2004;24:259–70. [PubMed]