PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of annbotAboutAuthor GuidelinesEditorial BoardAnnals of Botany
 
Ann Bot. 2010 June; 105(7): 1103–1108.
Published online 2010 March 12. doi:  10.1093/aob/mcq044
PMCID: PMC2887066

Boron transport in plants: co-ordinated regulation of transporters

Abstract

Background

The essentiality of boron (B) for plant growth was established >85 years ago. In the last decade, it has been revealed that one of the physiological roles of B is cross-linking the pectic polysaccharide rhamnogalacturonan II in primary cell walls. Borate cross-linking of pectic networks serves both for physical strength of cell walls and for cell adhesion. On the other hand, high concentrations of B are toxic to plant growth. To avoid deficiency and toxicity problems, it is important for plants to maintain their tissue B concentrations within an optimum range by regulating transport processes. Boron transport was long believed to be a passive, unregulated process, but the identification of B transporters has suggested that plants sense and respond to the B conditions and regulate transporters to maintain B homeostasis.

Scope

Transporters responsible for efficient B uptake by roots, xylem loading and B distribution among leaves have been described. These transporters are required under B limitation for efficient acquisition and utilization of B. Transporters important for tolerating high B levels in the environment have also been identified, and these transporters export B from roots back to the soil. Two types of transporters are involved in these processes: NIPs (nodulin-26-like intrinsic proteins), boric acid channels, and BORs, B exporters. It is demonstrated that the expression of genes encoding these transporters is finely regulated in response to B availability in the environment to ensure tissue B homeostasis. Furthermore, plants tolerant to stress produced by low B or high B in the environment can be generated through altered expression of these transporters.

Conclusions

The identification of the first B transporter led to the discovery that B transport was a process mediated not only by passive diffusion but also by transporters whose activity was regulated in response to B conditions. Now it is evident that plants sense internal and external B conditions and regulate B transport by modulating the expression and/or accumulation of these transporters. Results obtained in model plants are applicable to other plant species, and such knowledge may be useful in designing plants or crops tolerant to soils containing low or high B.

Keywords: Boron, rhamnogalacturonan II, transporter, channel, xylem loading, phloem, over-expression, Arabidopsis thaliana, Oryza sativa, Hordeum vulgare, Triticum aestivum

Articles from Annals of Botany are provided here courtesy of Oxford University Press