PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of wtpaEurope PMCEurope PMC Funders GroupSubmit a Manuscript
 
J Neurosci. Author manuscript; available in PMC 2010 September 24.
Published in final edited form as:
PMCID: PMC2882023
EMSID: UKMS29225

Endogenous purinergic control of bladder activity via presynaptic P2X3 and P2X2/3 receptors in the spinal cord

Abstract

P2X3 and P2X2/3 receptors are localized on sensory afferents both peripherally and centrally and have been implicated in various sensory functions. However, the physiological role of these receptors expressed presynaptically in the spinal cord in regulating sensory transmission remains to be elucidated. Here, a novel selective P2X3 and P2X2/3 antagonist, AF-792 (previously known as RO-5), in addition to less selective purinoceptor ligands, was applied intrathecally in vivo. Cystometry recordings were made to assess changes in the micturition reflex contractions following drug treatments. We found AF-792 inhibited micturition reflex activity significantly (300 nmol; from baseline contraction intervals of 1.18 ± 0.07 min to 9.33 ± 2.50 min). Furthermore, inhibition of P2X3 and P2X2/3 receptors in the spinal cord significantly attenuated spinal activation of extracellular-signal regulated kinases (ERK) induced by acute peripheral stimulation of the bladder with 1% acetic acid by 46.4 ± 12.0 % on average. Hence, the data suggest that afferent signals originating from the bladder are regulated by spinal P2X3 and P2X2/3 receptors and establish directly an endogenous central presynaptic purinergic mechanism to regulate visceral sensory transmission. Identification of this spinal purinergic control in visceral activities may help the development of P2X3 and P2X2/3 antagonist to treat urological dysfunction such as overactive bladder and possibly other debilitating sensory disorders including chronic pain states.

Keywords: P2X, spinal cord, presynaptic, extracellular-signal regulated kinases, bladder, afferent

Introduction

Presynaptic regulation of neurotransmission by a variety of receptors, including nicotinic, ionotropic glutamate, P2X, and 5-HT3 receptors, is important for various nervous system functions such as learning, memory, and spinal reflexes (reviewed by Engelman and MacDermott, 2004). In particular for sensory neurotransmission gating, P2X receptors have been characterized extensively based on electrophysiological evidence using spinal cord slices (Nakatsuka et al., 2001, 2002, 2003; Chen and Gu, 2005). However, no in vivo studies have been undertaken to determine the functional significance of central presynaptic P2X receptors under normal physiological condition.

Previous studies have established the role of peripheral P2X3 and P2X2/3 receptors in facilitating afferent transmission of the micturition reflex pharmacologically (King et al., 2004; Nishiguchi et al., 2005) in addition to using knockout mice (Cockayne et al., 2000, 2005). Importantly in the spinal cord, expression of P2X3 and P2X2/3 receptors appears to be mostly restricted to the presynaptic terminals of non-peptidergic afferents terminating in lamina IIi (Vulchanova et al., 1997; Bradbury et al., 1998; Guo et al., 1999). In this study, the micturition reflex contraction intervals were chosen to assess the functional sensory modulation (Cefalu et al., 2007b) by spinal presynaptic P2X3 and P2X2/3 receptors. A paucity of selective pharmacological tools has hindered the efforts to study the contribution the receptors in sensory functions in vivo. However, recent advances in medicinal chemistry have been made and AF-792 (previously known as RO-5), which is one of a new series of metabolically stable selective and the most potent drug-like P2X3 and P2X2/3 antagonists identified to-date (Gever et al., 2006; Carter et al., 2009; Jahangir et al., 2009), is used here. The structure has already been published and described as Compound 28 in Carter et al. (2009).

We present data demonstrating the role of presynaptic P2X3 and P2X2/3 receptors in the spinal cord in regulating bladder micturition reflex neurotransmission and in particular, via the extracellular-regulated signal kinases 1 and 2 (ERK) pathway following acute noxious bladder stimulation. By using a novel and selective P2X3 and P2X2/3 antagonist, we reveal an endogenous presynaptic purinergic sensory regulation of visceral neurotransmission in the spinal cord in vivo.

Methods

All procedures were performed in accordance with United Kingdom Home Office regulations (Animals Scientific Procedures Act, 1986). Adult female Sprague-Dawley rats (200-280g, Harlan, U.K.) were used and housed with free access to food and water at 25°C with a 12-h alternating light/dark cycle.

Surgical procedures

For intrathecal delivery, catheters were implanted into the lumbar subarachnoid space at least 1 day before cystometry and phosphorylated-ERK (pERK) immunohistochemical studies based on methods previously described (Lever et al., 2003). In brief, rats were anesthetized with medetomidine (0.25 mg/kg, i.p.) and ketamine (60 mg/kg, i.p.). A small laminectomy was made at the sixth or seventh thoracic vertebra and a fine cannula was inserted under the dura mater such that the tip was located at L1 level. Anaesthesia was reversed by atipamezole hydrochloride (1 mg/kg, s.c.) after surgery. On the study day, the urinary bladder was cannulated according to procedures described in Cefalu et al. (2007b). Briefly, animals were anesthetized with urethane (1.2 g/kg, i.p.). An abdominal incision was made along the linea alba to expose the bladder and ureters for cannulation and ligation, respectively. The external urethral orifice was ligated to create an isovolumetric system.

Cystometry studies

The bladder cannula was connected to a pressure transducer for measurement of intravesicular bladder pressure and to a saline infusion pump. The bladder was infused with saline at 100 μl/min until the threshold was reached to elicit micturition reflex contractions. Then the rate was lowered to 3-5 μl/min to maintain stable isovolumetric bladder contractions. Following observations of stable baseline contractions (a minimum of 10 min), vehicle was administered. This was followed by various doses of α,β-methylene-ATP (αβmeATP) (0.1 nmol to 100 nmol), pyridoxal-phosphate-6-azophenyl-2′,4′,-disulphonic acid (PPADs) (1 nmol to 400 nmol), 2′,3′-O-(2,4,6-trinitrophenyl) adenosine 5′-triphosphate monolithium trisodium salt (TNP-ATP) (0.1 nmol to 100 nmol), and AF-792 (1 nmol to 300 nmol). Each dosing (10 μl; with a minimal separation interval of 8 min or when the contraction frequency returned to baseline; n = 5 - 15) was administered via the implanted intrathecal cannula slowly using a Hamilton syringe, followed by 10 μl flush of sterile saline. αβmeATP, PPADs, and TNP-ATP (Sigma-Aldrich, U.K.) were dissolved in sterile saline; AF-792 (Afferent Pharmaceuticals, CA, USA) was dissolved in 5% DMSO (in saline). Recordings and analysis were made using PowerLab and Chart 5 (ADInstruments, U.K.).

ERK activation immunohistochemical studies

In separate experiments, ERK activation was studied in the spinal cord following acute noxious stimulation in the bladder of naïve rats. At least one hour after bladder cannulation, either AF-792 (300 nmol) or its vehicle (5% DMSO) was administered via the implanted intrathecal cannula. Ten min later, 700 μl of 1% acetic acid was instilled intravesically into the bladder for 2 min. For the sham group, animals were administered with vehicle (5% DMSO, i.t.) without acetic acid instillation and left untouched for 12 min. Animals were then transcardially perfused with heparinised saline (5 IU/ml in 0.9% saline) followed by 4% paraformaldehyde (in 0.1 M phosphate buffer, VWR, U.K.) with 15% saturated picric acid (Sigma-Aldrich, U.K.). Lumbar spinal cord was dissected out of the animals, post-fixed overnight, and transferred into 20% sucrose before being embedded and frozen in OCT compound (BDH, Poole, UK). Transverse L6 spinal cord segment sections (20 μm) were cut with a cryostat and mounted onto superfrost slides. Immunohistochemical detection of pERK staining was determined using tyramide signal amplification protocol detailed in Wong et al. (2006). Slides were incubated in the following (with 3×5 min PBS washes between each step): polyclonal rabbit anti-Phospho-p44/42 MAPK (Thr202/Tyr204) (pERK) antibody (1:400, overnight, New England Biolabs, Hertfordshire, UK), biotinylated donkey anti-rabbit secondary antibody (1:400, 1.5 hr, Jackson ImmunoResearch), avidin–biotin peroxidase complex (30 min, Vectastain ABC Elite Kit, Vector Laboratories, U.K.), biotinyl tyramide (1:75, 10 min; Perkin Elmer, U.K.), and extra-avidin FITC (1:500, 2 hr; Sigma-Aldrich, U.K.). Lastly, the slides were washed and coverslipped with Vectashield mounting medium (Vector Laboratories, U.K.). Images were taken with a fluorescence Carl Zeiss microscope and AxioVision 4.6 at x20 objective magnification. Each treatment group was consisted of four animals and three sections at the L6 level were randomly chosen from each animal for analysis. Counting of pERK-positive cells was done blindly to the experimental conditions.

Statistical Analysis

Data for cystometry studies were statistically compared using One-way ANOVA Repeated Measures followed by the Bonferroni post-hoc test (Sigma Stat 3.5 software). The number of pERK-positive cells was analyzed using One-way ANOVA followed by the Tukey post-hoc test. All data are presented as means ± SEM and statistical significance was set at p < 0.05.

Results

We investigated the role of presynaptic spinal P2X3 and P2X2/3 receptors in controlling micturition reflexes by intrathecal administration of purinergic compounds, using in vivo cystometry and comparing the activation of ERK in spinal cord neurons following noxious stimulation of the bladder.

Under isovolumetric conditions, the urinary bladder of anaesthetized rats displayed stable rhythmic contractions that did not alter significantly following vehicle injections (αβmeATP: baseline, 1.13 ± 0.03 min; vehicle, 1.39 ± 0.09 min, n = 9; PPADs: baseline, 1.12 ± 0.07 min; vehicle, 1.37 ± 0.09 min, n = 13; TNP-ATP: baseline, 1.06 ± 0.06 min; vehicle, 1.47 ± 0.10 min, n = 15; AF-792: baseline, 1.18 ± 0.07 min; vehicle: 1.72 ± 0.08 min, n = 8). All purinoceptor compounds tested reduced the frequency of micturition reflex contractions indicated by an increase in intercontraction intervals (ICI) (Figs. (Figs.11 and and2).2). αβmeATP, a desensitizing purinergic agonist/antagonist, dose-dependently inhibited the contractions significantly by prolonging the ICI up to 10 min with the lowest significant dose started at 1 nmol (i.t.) (8.45 ± 2.48 min; p = 0.026, n = 6) (Figs. (Figs.1A1A and and2A).2A). PPADs (pIC50 at P2X3: 6; at P2X2/3: 6) increased the ICI to more than 2 min but only with significance at 10 nmol (i.t.) (3.50 ± 1.15 min; p = 0.042, n = 9). Its variable effects were likely due to its weak antagonism (Figs. (Figs.1B1B and and2B).2B). TNP-ATP (pIC50 at P2X3: 9; at P2X2/3: 8.4; at P2X1: 8.22), a more selective antagonist at P2X3 and P2X2/3 but also with activity on P2X1 receptor, was next tested. TNP-ATP caused a more potent inhibition on contractions than PPADs by increasing the ICI significantly at 1 nmol (i.t.) (4.64 ± 1.30 min; p = 0.015, n = 11) and 10 nmol (i.t.) (4.28 ± 1.21 min; p = 0.037, n = 11) (i.t.) (Figs. (Figs.1C1C and and2C).2C). AF-792 is a novel selective P2X3 and P2X2/3 antagonist (pIC50 at P2X3: 8.2; at P2X2/3: 7.9) from the same diaminopyrimidine series as RO-3 and RO-4 (Gever et al., 2006; Carter et al., 2009; pIC50 values for all the antagonists mentioned above are cited from these two papers). The selectivity of AF-792 (previously known as RO-5) for P2X3 and P2X2/3 receptors over other P2X receptors was established by testing the ability of AF-792 to block agonist-evoked intracellular calcium flux in cell lines expressing recombinant P2X receptors. pIC50 values and the selectivity profile for AF-792 were determined according to methods previously described for RO-3 in Ford et al. (2006). In brief, pIC50 values were determined by measuring cytosolic calcium flux evoked by αβmeATP or ATP (300 nM to 10 μM depending on receptor subtype) in Fluo-3-loaded CHOK1 (transfected with recombinant human P2X1, rat P2X3, human P2X4, rat P2X5, or human P2X7 receptors) and 1321N1 astrocytoma cells (transfected with cloned human P2X2 or human P2X2/3 receptors) (Table 1). In summary, AF-792 was found to be very selective with actions on P2X3 and P2X2/3 receptors only with no inhibition at other P2X receptors up to a concentration of 10 μM. In addition, AF-792 has been profiled extensively in two commercially available screens, one covering 75 receptors, channels, enzymes, and transporters (Cerep, Poitiers, France) and a second one covering more than 100 kinases (Ambit, San Diego, USA), and the results demonstrated little or no inhibition of radioligand binding or function in the presence 10 μM AF-792. In the current study, AF-792 caused significant inhibition of contractions at 100 nmol (i.t.) (8.00 ± 1.67 min; p = 0.002, n = 8) and 300 nmol (i.t.) (9.33 ± 2.50 min; p < 0.001, n = 6) (Figs. (Figs.1D1D and and2D).2D). The maximum effect of AF-792 in prolonging the ICI was longer compared with those following TNP-ATP and PPADs administration. The amplitudes of bladder contractions before and following every dose of all four purinergic ligands were analyzed and found not to be significantly affected (data not shown).

Figure 1
Sample traces of cystometry recording following intrathecal application of (A) αβmeATP, (B) PPADs, (C) TNP-ATP, and (D) AF-792, and their respective vehicles. Horizontal and vertical scale bars represent 5 min and 40 cmH2O, respectively. ...
Figure 2
Intrathecal application of (A) αβmeATP, (B) PPADs, (C) TNP-ATP, and (D) AF-792 inhibits isovolumetric bladder contractions in naïve anaesthetized animals in vivo (n = 5 – 12 for each dose). Values of p < 0.05 (*), ...
Table 1
Pharmacological selectivity of AF-792

ERK activation in the spinal cord is correlated with bladder hyperactivity, which may be associated with bladder inflammation caused by agents including acetic acid (Cruz et al., 2005, 2007). Therefore, we compared the level of ERK phosphorylation (pERK) in the spinal cord after acute acetic acid stimulation of the bladder with and without spinal P2X3 and P2X2/3 receptor blockade to further investigate the possible receptor signalling cascade. Instillation of 1% acetic acid into the bladder after vehicle injection intrathecally significantly (p = 0.001) increased the number of pERK-positive cells in the L6 spinal cord segment (80.2 ± 7.0 cells/ section) in comparison with sham-vehicle control animals (21.9 ± 5.7 cells/ section) (Figs. 3A, B, and C). Activation of ERK by 1% acetic acid was seen throughout the spinal cord in the regions of the superficial dorsal horn, dorsal commissure, and the sacral parasympathetic nucleus (Figs. 3C and E). The injection of AF-792 (300 nmol, i.t.) significantly reduced the spinal expression of pERK-positive cells (43.0 ± 9.6 cells/ section; p = 0.018) induced by acetic acid stimulation in the bladder and to a level that is not significantly different from sham-vehicle control animals (Figs. 3A, D, and F). On average, the number of pERK-positive cells throughout the spinal cord following AF-792 intervention represented a significant reduction of 46.4 ± 12.0 % in comparison with the number in vehicle-treated animals following acetic acid stimulation in the bladder. In summary, the increases in micturition reflex ICI by P2X3 and P2X2/3 inhibitors intrathecally and the reduced ERK activation following intrathecal application of AF-792 under acute noxious stimulation of the bladder provided evidence of a spinal endogenous presynaptic purinergic regulation of sensory neurotransmission originating from the bladder.

Figure 3
(A) AF-792 (300 nmol, i.t.) significantly reduces pERK-positive cells in the spinal cord following 1% acetic acid stimulation of the bladder. (n = 4 for each group) Values of p < 0.05 (*) and p < 0.001 (***) compared with 1% acetic acid-stimulated ...

Discussion

Multiple lines of evidence have identified P2X3 and P2X2/3 receptors to be involved in sensory processing (Khakh and North, 2006), including mediating partly the afferent transmission of bladder reflexes (Cockayne et al., 2000, 2005; King et al., 2004). More recently, spinal P2X3 and P2X2/3 receptors have been implicated in chronic neuropathic and inflammatory pain conditions (McGaraughty et al., 2003; Sharp et al., 2006) and electrophysiological studies added support to their role in sensory neurotransmission (Nakatsuka and Gu, 2006). We had previously reported preliminary data of the involvement of both peripheral and central P2X3 and P2X2/3 receptors in micturition reflex (Cefalu et al., 2007a). In this study, our data reveal that peripheral afferent inputs from the urinary bladder are under tonic physiological control of an endogenous purinergic system via presynaptic spinal P2X3 and P2X2/3 receptors.

We demonstrated directly the functional significance of spinal P2X3 and P2X2/3 receptors by applying intrathecally P2X3 and P2X2/3 inhibitors (in the form of desensitizing agonist or antagonists) in vivo. Inhibition of micturition reflex contractions by αβmeATP correlated with its previous pharmacological characterization as a desensitizing purinergic agonist/antagonist (Kasakov and Burnstock, 1982; Tsuda et al., 1999; Nakatsuka et al., 2003; King et al., 2004). Similarly, commercially available purinoceptor antagonists, PPADs and TNP-ATP, reduced micturition reflex contraction frequency. In the past, lack of suitable drugs with receptor subtype selectivity has hindered further direct proof of the role of P2X3 and P2X2/3 receptors in sensory functions until recently when two novel non-nucleotide small molecule antagonists, A-317491 and RO-3, were reported to alleviate pain behaviour in animal models (Jarvis et al., 2002 and Ford et al., 2006). A-317491 was found to improve urodynamic parameters in animals with spinal cord injury or cyclophosphamide-cystitis when administered intravenously (Lu et al 2007; Ito et al 2008) with presumed peripheral site of action since A-317491 has negligible CNS permeability (Wu et al. 2004). Here, we intrathecally applied AF-792 (previously known as RO-5), a novel and potent selective antagonist which belongs to the same chemical series as RO-3, in order to clarify the role of spinal P2X3 and P2X2/3 receptors in micturition reflex pharmacologically. AF-792 produced longer-lasting inhibition of the micturition reflex contractions than PPADs and TNP-ATP. This may be because AF-792 is metabolically stable and much more selective for P2X3 and P2X2/3 receptors than other purinergic receptors. In contrast, PPADs is a non-selective purinergic antagonist and TNP-ATP is susceptible to rapid hydrolysis and break down by ecto-nucleotidases (Lambrecht, 2000). Thus, presynaptic P2X3 and P2X2/3 receptors are involved in facilitating the micturition reflex contraction via direct actions at the spinal cord level.

C-fibres that express P2X3 and P2X2/3 receptors mediate at least in part acetic acid-induced bladder hyperactivity (Avelino et al., 1999; Zhang et al., 2003) that may be contributed by increased urothelial release of ATP (Sugaya et al., 2007). Phosphorylation of ERK is accepted as a nociceptive signalling marker (Obata and Noguchi 2004, Cruz and Cruz, 2007) and inhibition of spinal ERK reduces inflammatory bladder hyperactivity (Cruz et al., 2005). Therefore, spinal ERK activation was used as another measure of the degree of afferent input into the spinal cord following acute bladder stimulation. Here we found that noxious stimulation of the bladder by acetic acid led to significant ERK activation in the spinal cord in regions that are known to contain sensory afferent inputs from the bladder and also where further central projections are made, confirming observations made by Cruz et al. (2005, 2007). Intrathecal application of AF-792 reduced significantly the number of pERK-positive cells throughout all these regions. Our results are consistent with the previous suggested role of spinal P2X receptors in mediating bladder overactivity (Masuda et al., 2005). Hence in the spinal cord, inhibition of presynaptic P2X3 and P2X2/3 receptors likely dampened the afferent hyperexcitability originating from stimulation of the primary afferents by acetic acid in the bladder, as reflected by the overall decrease in ERK activation. Since P2X3 and P2X2/3 receptors are also expressed on afferents peripherally, AF-792 would be expected to cause similar inhibitory actions if administered peripherally, as demonstrated with other less selective purinergic compounds (King et al. 2004).

Here, we showed the novel endogenous role of presynaptic P2X3 and P2X2/3 receptors in the spinal cord to facilitate the sensory input of micturition reflex by applying a novel selective antagonist in vivo and activate the ERK signalling pathway following peripheral noxious stimulation. Hyperactivity in the spinal cord is common in diseased chronic pain states (D'Mello and Dickenson, 2008) and multiple pain mediators can sensitize and affect the expression of P2X3 receptors peripherally and centrally (Paukert et al., 2001; Ramer et al., 2001). As development of P2X3 and P2X2/3 receptor antagonists to treat various sensory dysfunctions including chronic pain states and overactive bladder is currently underway, our novel data further strengthen its indication and make aware the importance of not overlooking the critical contribution of the receptors located presynaptically in the spinal cord.

Acknowledgement

This work was supported by the Natural Sciences and Engineering Research Council of Canada (TKYK), Ministry of Advanced Education of British Columbia (TKYK), Medical Research Council of United Kingdom (PKY), and Wellcome Trust (SBM). We thank Ms. Vivien Cheah and Mrs. Caroline Abel for their administrative assistance and Dr. Joel R. Gever for providing technical data for AF-792.

References

  • Avelino A, Cruz F, Coimbra A. Intravesical resiniferatoxin desensitizes rat bladder sensory fibres without causing intense noxious excitation. A c-fos study. Eur J Pharmacol. 1999;378:17–22. [PubMed]
  • Bradbury EJ, Burnstock G, McMahon SB. The expression of P2X3 purinoreceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Mol Cell Neurosci. 1998;12:256–268. [PubMed]
  • Carter DS, Alam M, Cai H, Dillon MP, Ford AP, Gever JR, Jahangir A, Lin C, Moore AG, Wagner PJ, Zhai Y. Identification and SAR of novel diaminopyrimidines. Part 1: The discovery of RO-4, a dual P2X(3)/P2X(2/3) antagonist for the treatment of pain. Bioorg Med Chem Lett. 2009;19:1628–1631. [PubMed]
  • Cefalu JS, Burbach LR, Guillon MA, Benham JJ, Cockayne DA, Ford AP, Nunn PA. Comparison of novel high and low central nervous system penetrating dual purinergic P2X3/P2X2/3 antagonists on the micturition reflex in anesthetized rats. Am Urol Assoc Abstr. 2007a:425.
  • Cefalu JS, Zhu QM, Eggers AC, Kaan TK, Ho MJ, Jett MF, Cockayne DA, Ford AP, Nunn PA. Effects of the selective prostacyclin receptor antagonist RO3244019 on the micturition reflex in rats. J Urol. 2007b;178:2683–2688. [PubMed]
  • Chen M, Gu JG. A P2X receptor-mediated nociceptive afferent pathway to lamina I of the spinal cord. Mol Pain. 2005;1:4. [PMC free article] [PubMed]
  • Cockayne DA, Dunn PM, Zhong Y, Rong W, Hamilton SG, Knight GE, Ruan HZ, Ma B, Yip P, Nunn P, McMahon SB, Burnstock G, Ford AP. P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J Physiol. 2005;567:621–639. [PubMed]
  • Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford AP. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature. 2000;407:1011–1015. [PubMed]
  • Cruz CD, Avelino A, McMahon SB, Cruz F. Increased spinal cord phosphorylation of extracellular signal-regulated kinases mediates micturition overactivity in rats with chronic bladder inflammation. Eur J Neurosci. 2005;21:773–781. [PubMed]
  • Cruz CD, Cruz F. The ERK 1 and 2 Pathway in the Nervous System: From Basic Aspects to Possible Clinical Applications in Pain and Visceral Dysfunction. Curr Neuropharmacol. 2007;5:244–252. [PMC free article] [PubMed]
  • Cruz CD, Ferreira D, McMahon SB, Cruz F. The activation of the ERK pathway contributes to the spinal c-fos expression observed after noxious bladder stimulation. Somatosens Mot Res. 2007;24:15–20. [PubMed]
  • D'Mello R, Dickenson AH. Spinal cord mechanisms of pain. Br J Anaesth. 2008;101:8–16. [PubMed]
  • Engelman HS, MacDermott AB. Presynaptic ionotropic receptors and control of transmitter release. Nat Rev Neurosci. 2004;5:135–145. [PubMed]
  • Ford AP, Gever JR, Nunn PA, Zhong Y, Cefalu JS, Dillon MP, Cockayne DA. Purinoceptors as therapeutic targets for lower urinary tract dysfunction. Br J Pharmacol. 2006;147(Suppl 2):S132–143. [PMC free article] [PubMed]
  • Gever JR, Cockayne DA, Dillon MP, Burnstock G, Ford AP. Pharmacology of P2X channels. Pflugers Arch. 2006;452:513–537. [PubMed]
  • Guo A, Vulchanova L, Wang J, Li X, Elde R. Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci. 1999;11:946–958. [PubMed]
  • Ito K, Iwami A, Katsura H, Ikeda M. Therapeutic effects of the putative P2X3/P2X2/3 antagonist A-317491 on cyclophosphamide-induced cystitis in rats. Naunyn Schmiedebergs Arch Pharmacol. 2008;377:483–490. [PubMed]
  • Jahangir A, Alam M, Carter DS, Dillon MP, Bois DJ, Ford AP, Gever JR, Lin C, Wagner PJ, Zhai Y, Zira J. Identification and SAR of novel diaminopyrimidines. Part 2: The discovery of RO-51, a potent and selective, dual P2X(3)/P2X(2/3) antagonist for the treatment of pain. Bioorg Med Chem Lett. 2009;19:1632–1635. [PubMed]
  • Jarvis MF, et al. A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci U S A. 2002;99:17179–17184. [PubMed]
  • Kasakov L, Burnstock G. The use of the slowly degradable analog, alpha, beta-methylene ATP, to produce desensitisation of the P2-purinoceptor: effect on non-adrenergic, non-cholinergic responses of the guinea-pig urinary bladder. Eur J Pharmacol. 1982;86:291–294. [PubMed]
  • Khakh BS, North RA. P2X receptors as cell-surface ATP sensors in health and disease. Nature. 2006;442:527–532. [PubMed]
  • King BF, Knowles ID, Burnstock G, Ramage AG. Investigation of the effects of P2 purinoceptor ligands on the micturition reflex in female urethane-anaesthetized rats. Br J Pharmacol. 2004;142:519–530. [PMC free article] [PubMed]
  • Lambrecht G. Agonists and antagonists acting at P2X receptors: selectivity profiles and functional implications. Naunyn Schmiedebergs Arch Pharmacol. 2000;362:340–350. [PubMed]
  • Lever IJ, Pezet S, McMahon SB, Malcangio M. The signaling components of sensory fiber transmission involved in the activation of ERK MAP kinase in the mouse dorsal horn. Mol Cell Neurosci. 2003;24:259–270. [PubMed]
  • Lu SH, Groat WC, Lin AT, Chen KK, Chang LS. Evaluation of purinergic mechanism for the treatment of voiding dysfunction: a study in conscious spinal cord-injured rats. J Chin Med Assoc. 2007;70:439–434. [PMC free article] [PubMed]
  • Masuda H, Chancellor MB, Kihara K, de Groat WC, Yoshimura N. Evidence for the involvement of spinal endogenous ATP and P2X receptors in detrusor overactivity caused by acetic acid, acrolein or cyclophosphamide. Int Continence Soc Abst. 2005:239.
  • McGaraughty S, Wismer CT, Zhu CZ, Mikusa J, Honore P, Chu KL, Lee CH, Faltynek CR, Jarvis MF. Effects of A-317491, a novel and selective P2X3/P2X2/3 receptor antagonist, on neuropathic, inflammatory and chemogenic nociception following intrathecal and intraplantar administration. Br J Pharmacol. 2003;140:1381–1388. [PMC free article] [PubMed]
  • Nakatsuka T, Furue H, Yoshimura M, Gu JG. Activation of central terminal vanilloid receptor-1 receptors and alpha beta-methylene-ATP-sensitive P2X receptors reveals a converged synaptic activity onto the deep dorsal horn neurons of the spinal cord. J Neurosci. 2002;22:1228–1237. [PubMed]
  • Nakatsuka T, Gu JG. ATP P2X receptor-mediated enhancement of glutamate release and evoked EPSCs in dorsal horn neurons of the rat spinal cord. J Neurosci. 2001;21:6522–6531. [PubMed]
  • Nakatsuka T, Gu JG. P2X purinoceptors and sensory transmission. Pflugers Arch. 2006;452:598–607. [PubMed]
  • Nakatsuka T, Tsuzuki K, Ling JX, Sonobe H, Gu JG. Distinct roles of P2X receptors in modulating glutamate release at different primary sensory synapses in rat spinal cord. J Neurophysiol. 2003;89:3243–3252. [PubMed]
  • Nishiguchi J, Hayashi Y, Chancellor MB, de Miguel F, de Groat WC, Kumon H, Yoshimura N. Detrusor overactivity induced by intravesical application of adenosine 5′-triphosphate under different delivery conditions in rats. Urology. 2005;66:1332–1337. [PubMed]
  • Obata K, Noguchi K. MAPK activation in nociceptive neurons and pain hypersensitivity. Life Sci. 2004;74:2643–2653. [PubMed]
  • Paukert M, Osteroth R, Geisler HS, Brandle U, Glowatzki E, Ruppersberg JP, Grunder S. Inflammatory mediators potentiate ATP-gated channels through the P2X(3) subunit. J Biol Chem. 2001;276:21077–21082. [PubMed]
  • Ramer MS, Bradbury EJ, McMahon SB. Nerve growth factor induces P2X(3) expression in sensory neurons. J Neurochem. 2001;77:864–875. [PubMed]
  • Sharp CJ, Reeve AJ, Collins SD, Martindale JC, Summerfield SG, Sargent BS, Bate ST, Chessell IP. Investigation into the role of P2X(3)/P2X(2/3) receptors in neuropathic pain following chronic constriction injury in the rat: an electrophysiological study. Br J Pharmacol. 2006;148:845–852. [PMC free article] [PubMed]
  • Sugaya K, Nishijima S, Tasaki S, Kadekawa K, Miyazato M, Ogawa Y. Effects of propiverine and naftopidil on the urinary ATP level and bladder activity after bladder stimulation in rats. Neurosci Lett. 2007;429:142–146. [PubMed]
  • Tsuda M, Ueno S, Inoue K. Evidence for the involvement of spinal endogenous ATP and P2X receptors in nociceptive responses caused by formalin and capsaicin in mice. Br J Pharmacol. 1999;128:1497–1504. [PMC free article] [PubMed]
  • Vulchanova L, Riedl MS, Shuster SJ, Buell G, Surprenant A, North RA, Elde R. Immunohistochemical study of the P2X2 and P2X3 receptor subunits in rat and monkey sensory neurons and their central terminals. Neuropharmacology. 1997;36:1229–1242. [PubMed]
  • Wong LF, Yip PK, Battaglia A, Grist J, Corcoran J, Maden M, Azzouz M, Kingsman SM, Kingsman AJ, Mazarakis ND, McMahon SB. Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord. Nat Neurosci. 2006;9:243–250. [PubMed]
  • Wu G, Whiteside GT, Lee G, Nolan S, Niosi M, Pearson MS, Ilyin VI. A-317491, a selective P2X3/P2X2/3 receptor antagonist, reverses inflammatory mechanical hyperalgesia through action at peripheral receptors in rats. Eur J Pharmacol. 2004;504:45–53. [PubMed]
  • Zhang X, Igawa Y, Ishizuka O, Nishizawa O, Andersson KE. Effects of resiniferatoxin desensitization of capsaicin-sensitive afferents on detrusor over-activity induced by intravesical capsaicin, acetic acid or ATP in conscious rats. Naunyn Schmiedebergs Arch Pharmacol. 2003;367:473–479. [PubMed]