Search tips
Search criteria 


Logo of agingLink to Publisher's site
Aging (Albany NY). 2010 April; 2(4): 231–237.
Published online 2010 April 9. doi:  10.18632/aging.100133
PMCID: PMC2881511

Living on the edge: stress and activation of stress responses promote lifespan extension


Oxidative stress constitutes the basis of physio-pathological situations such as neurodegenerative diseases and aging. However, sublethal exposure to toxic molecules such as reactive oxygen species can induce cellular responses that result in stress fitness. Studies in Schizosaccharomyces pombe have recently showed that the Sty1 MAP kinase, known to be activated by hydrogen peroxide and other cellular stressors, plays a pivotal role in promoting fitness and longevity when it becomes activated by calorie restriction, a situation which induces oxidative metabolism and reactive oxygen species production. Activation of the MAP kinase by calorie restriction during logarithmic growth induces a transcriptional anti-stress response including genes essential to promote lifespan extension. Importantly enough, the lifespan promotion exerted by deletion of the pka1 or sck2 genes, inactivating the two main nutrient-responsive pathways, is dependent on the presence of a functional Sty1 stress pathway, since double mutants also lacking Sty1 or its main substrate Atf1 do not display extended viability. In this Research Perspective, we review these findings in relation to previous reports and extend important aspects of the original study. We propose that moderate stress levels that are not harmful for cells can make them stronger.

Keywords: MAP kinase, aging, oxidative stress, protein kinase A, Sty1, Sck2

Aging and lifespan extension have been a matter of debate for decades, with huge social interest in the civilized world, and much personal and financial effort focusing on this hot topic. The molecular mechanisms that govern cellular aging have been conserved over the course of evolution, so that pluricellular and unicellular model systems share similar environmental and genetic strategies for modulating the aging process. Several reports have indicated earlier that either calorie restriction or the inactivation of nutrient-dependent pathways (i.e. protein kinase A) is able to promote life extension in different eukaryotes.

In unicellular fungi, researchers use two different cellular situations in order to study the mechanisms of aging: replicative aging refers to the number of descendents that a cell can generate before its death, whereas chronological lifespan measures the viability of cultures at the stationary phase of the growth curve. Therefore, chronological aging constitutes a model for differentiated somatic cells. Recently, Schizosaccharomyces pombe has been used as a model system for the study of chronological aging. As described for other eukaryotes, fission yeast cultures grown under low glucose conditions survive longer at the stationary phase than cultures grown in the same medium but with higher concentrations of the carbon source. It is worth pointing out that in both types of medium the concentration of glucose in the extracellular environment is undetectable soon after reaching the stationary phase. Therefore, the type of metabolism occurring -during the metabolically -active logarithmic cultures seems to condition chronological aging. What is the link between calorie restriction and lifespan extension? When comparing S. pombe cultures growing in yeast extract-based media with 1% versus 4% glucose, we have determined that the respiratory rates differ considerably [1]. Indeed, low glucose cultures display significantly higher oxygen consumption levels, as an indicator of oxidative metabolism, than those of high glucose cultures. Intracellular production of reactive oxygen species (ROS) is also more elevated in cells grown under low glucose conditions. Under this situation, the MAP kinase Sty1, which is also a sensor of extracellular hydrogen peroxide stress (H2O2), becomes activated to a much higher extent in cells grown in this respiratory-prone medium, probably as a consequence of elevated ROS levels. Since its identification in 1995 by Shiozaki, Russell and Millar groups [2,3], this MAP kinase has been traditionally linked to the activation of wide transcriptional responses promoting survival under diverse environmental stresses (for reviews, see [4,5]). The activation of Sty1 at the onset of stationary phase only under conditions of calorie restriction suggests that the gene response triggered by this stressful situation may contribute to the establishment of a quiescent state which would allow survival under a hypometabolic stage. In fact, cells lacking Sty1 or its main effector, the transcription factor Atf1 [6-8], display a compromised viability even under calorie restriction (Figure (Figure1).1). We believe that growth under low-glucose media promotes respiration versus fermentation, ROS production, Sty1 phosphorylation/ activation and as a consequence the induction of a transcriptional stress program which will contribute to the fitness of cells under starvation conditions (Figure (Figure1). 1).

Figure 1.
Activation of Sty1 stress response pathway is required for life extension upon calorie restriction.

In the process of chronological aging in fission yeast, we suggest that oxidative stress is exerting two antagonistic roles. On one hand, during late logarithmic phase, we report the first side, a beneficial, signalling role of ROS: growth under calorie restriction allows for the activation of a ROS-activated, MAP kinase-driven signalling pathway which promotes a global transcriptional change (up to 400 genes can be regulated by Sty1) [9,10], meant to induce cellular fitness. This hormetic effect of mild stresses, able to induce adaptive responses, has been widely reported in several model systems [11-15], and the blockage of such non-toxic stress, for instance with antioxidants, may preclude its health-promoting effects [16]. On the other hand, death at the stationary phase may well be dependent on oxidative stress, as suggested by Rokeach and colleagues [17] and by ourselves [1]: the levels of ROS of live cells at stationary phase are higher in cultures from glucose-rich media (Figure (Figure2A),2A), as are the levels of carbonylated proteins (Figure (Figure2B).2B). We suggest that, as widely reported in the literature (for a review, see [18]), oxidative stress is the main cause of the molecular damage associated with death in chronological aging.

Figure 2.
Oxidative stress as a cause of death of stationary phase, glucose-rich cultures.

For any model system studied, it is widely accepted that the de-repression of pathways which should only be active upon calorie restriction is a genetic intervention which promotes lifespan extension (for reviews, see [19-22]). For instance, both in budding and fission yeasts, deletion of the genes coding for the protein kinase A or the TOR kinase substrate, SCH9 (S. cerevisiae) / Sck2 (S. pombe) kinases, induces longevity even under glucose-rich conditions [1,17,23-25] (Figure (Figure3A).3A). Is this genetically-driven lifespan promotion in any way connected to the Sty1 MAP kinase pathway in fission yeast? Apparently so, because cells carrying double deletions of the genes pka1 orsck2, coding for two kinases governing the two main nutrient-dependent pathways, and either the sty1 or the atf1 genes [1] (Figure (Figure3A),3A), display a highly compromised viability at stationary phase. We have reported that deletion of the pka1 gene leads to an enhanced oxygen consumption even with high glucose levels [1], elevated intracellular ROS (Figure (Figure3B)3B) and basal Sty1 phosphorylation [1] (Figure (Figure3B),3B), and this promotes cell survival without the need of calorie restriction-driven hormotic activation of stress responses. In the case of the TOR substrate, Sck2, we suspect that deletion of its gene may also induce a subtle de-repression of respiration as it has been reported for the budding yeast homolog SCH9 [26], although we have not been able to experimentally probe it yet.

Figure 3.
Role of the Sty1, Pka1 and TOR-Sck2 pathways in stationary phase.

It is important to point out that the glucose-dependent Pka1 pathway has been traditionally linked to the stationary phase in fission yeast (for a review, see [27]).

In fact, a number of genes such as fbp1 (coding for the gluconeogenesis regulatory protein fructose-1,6-bisphosphatase; [28]) are triggered at the onset of stationary phase in a Pka1-dependent manner. During logarithmic growth, that is, in the presence of glucose, Pka1 kinase is fully active and phosphorylates and inactivates the transcription factor Rst2, which cannot trigger fbp1 transcription. Upon glucose depletion, cAMP levels decrease, and the regulatory subunit of Pka1, Cgs1, is then free to interact with the kinase, inactivate it and trigger Rst2-dependent fbp1 transcription. Therefore, whereas deletion of the pka1gene induces lifespan extension by de-repressing its gene expression program and activating Sty1 (Figure 3ABC), deletion of cgs1 leads to a severe phenotype under calorie restriction, like the one described for cells lacking Sty1 or Atf1 (Figure (Figure3D).3D). That indicates, as previously suggested, that activation of gene responses by both the Sty1-Atf1 pathway and the Pka1/Cgs1-Rst2 pathways are required for survival at stationary phase.

Activation of fbp1 and other genes depends on both the Pka1 and the Sty1 pathways [29], whereas activation of the stress genes atf1, gpx1, cta1 and gpd1 depends mainly on the presence of Sty1 and Atf1 (Figure (Figure3C).3C). We also know now that the activation of the MAP kinase dependent transcriptional response has a more prominent role than the one of the Pka1 pathway, since constitutive activation of Sty1 (by deletion of the gene coding for the Sty1 phosphatase Pyp1) can partially overcome the defects of cells lacking Cgs1, at least at early times (Figure (Figure3E;3E; Day 2); on the contrary, in the [increment]pka1[increment]sty1 strain the phenotype of the sty1 deletion predominates (Figure (Figure3A)3A) [1].

In fission yeast, an experimental approach to study proliferation versus quiescence is to nutritionally starve logarithmically growing cultures by simply harvesting cells from complete media and re-suspending them in media depleted of an essential growth component. The genetic bases for entry into and maintenance of quiescence upon nitrogen deprivation have been recently characterized [30-32], and we have observed that lack of phosphate or sulphate can also trigger viability in fission yeast (Figure (Figure4A).4A). It is important to point out that, in these types of abrupt starvation, extracellular glucose cannot be depleted, suggesting that during logarithmic growth cells do not accumulate any energy source reservoir and that quiescent cells remain metabolically active [30] (Figure (Figure4A).4A). Are the Sty1/Atf1 and the Pka1/Cgs1 pathways essential to promote entry into and maintenance of quiescence using this experimental approach? Indeed, they are. In a genetic screen to detect genes required for entry into and maintenance of quiescence upon nitrogen deprivation, strains lacking Sty1 or its double MAP kinase Wis1 were consistently isolated [31]. We have determined that the MAP kinase is also required to promote viability upon sulphate and phosphate starvation (Figure (Figure4A).4A). Whatever the mechanism of activation may be, the MAP kinase becomes phosphorylated/activated by nitrogen [8], sulphate and phosphate depletion (Figure (Figure4B). 4B). Importantly, gene induction by the Pka1 pathway may also be required to maintain quiescence, since cells lacking Cgs1 lose viability under nitrogen starvation (Figure (Figure4C). 4C).

Figure 4.
Quiescence establishment upon nitrogen, sulphate or phosphate starvation is glucose- and Sty1-dependent.

In conclusion, using fission yeast as a model system we confirm that moderate levels of stress due to oxidative metabolism during the logarithmic growth may prepare cells to encounter future periods of starvation or inactivity, and that a MAP kinase pathway has an essential role in linking endogenous stress and the activation of a genetic fitness program. Similarly, a role for the Sty1 mammalian ortholog p38 in promoting senescence has been established (for a recent review, see [33]). In fact, it has also been postulated that the beneficial effect on replicative aging of human fibroblasts of heat shock-induced hormesis is concomitant to enhanced levels of some MAP kinases [15]. Whether calorie restriction may exert a beneficial effect on human cells through activation of basal p38 activity remains to be demonstrated.

NOTE: Most of the experimental procedures, media and strains used to perform the figures in this manuscript are fully described in reference [1]. Only the strains generated for this work are described in the figure legends (complete genotypes in brackets).


We thank Mercè Carmona and other members of the laboratory for helpful discussions. We apologize to any authors which find themselves reflected in this work but are not cited; it is due to space limitations. This work was supported by Dirección General de Investigación of Spain Grants BFU2006-02610 and BFU2009-06933, Plan E and FEDER, and by the Spanish program Consolider-Ingenio 2010 Grant CSD 2007-0020 to E.H.


The authors declare that they have no competing financial interests related to this manuscript.


1. Zuin A, Carmona M, Morales-Ivorra I, Gabrielli N, Vivancos AP, Ayte J, Hidalgo E. Lifespan extension by calorie restriction relies on the Sty1 MAP kinase stress pathway. Embo J. 2010;29:981–991. [PubMed]
2. Millar JB, Buck V, Wilkinson MG. Pyp1 and Pyp2 PTPases dephosphorylate an osmosensing MAP kinase controlling cell size at division in fission yeast. Genes Dev. 1995;9:2117–2130. [PubMed]
3. Shiozaki K, Russell P. Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature. 1995;378:739–743. [PubMed]
4. Vivancos AP, Jara M, Zuin A, Sanso M, Hidalgo E. Oxidative stress in Schizosaccharomyces pombe: different H(2)O (2 )levels, different response pathways. Mol Genet Genomics. 2006;276:495–502. [PubMed]
5. Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Mol Cell. 2007;26:1–14. [PubMed]
6. Takeda T, Toda T, Kominami K, Kohnosu A, Yanagida M, Jones N. Schizosaccharomyces pombe atf1+ encodes a transcription factor required for sexual development and entry into stationary phase. EMBO J. 1995;14:6193–6208. [PubMed]
7. Wilkinson MG, Samuels M, Takeda T, Toone WM, Shieh JC, Toda T, Millar JB, Jones N. The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast. Genes Dev. 1996;10:2289–2301. [PubMed]
8. Shiozaki K, Russell P. Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev. 1996;10:2276–2288. [PubMed]
9. Chen D, Toone WM, Mata J, Lyne R, Burns G, Kivinen K, Brazma A, Jones N, Bahler J. Global transcriptional responses of fission yeast to environmental stress. MolBiolCell. 2003;14:214–229. [PMC free article] [PubMed]
10. Chen D, Wilkinson CR, Watt S, Penkett CJ, Toone WM, Jones N, Bahler J. Multiple pathways differentially regulate global oxidative stress responses in fission yeast. Mol Biol Cell. 2008;19:308–317. [PMC free article] [PubMed]
11. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 2007;6:280–293. [PubMed]
12. Gems D, Partridge L. Stress-response hormesis and aging: "that which does not kill us makes us stronger". Cell Metab. 2008;7:200–203. [PubMed]
13. Kharade SV, Mittal N, Das SP, Sinha P, Roy N. Mrg19 depletion increases S. cerevisiae lifespan by augmenting ROS defence. FEBS Lett. 2005;579:6809–6813. [PubMed]
14. Rattan SI, Sejersen H, Fernandes RA, Luo W. Stress-mediated hormetic modulation of aging, wound healing, and angiogenesis in human cells. Ann N Y Acad Sci. 2007;1119:112–121. [PubMed]
15. Nielsen ER, Eskildsen-Helmond YE, Rattan SI. MAP kinases and heat shock-induced hormesis in human fibroblasts during serial passaging in vitro. Ann N Y Acad Sci. 2006;1067:343–348. [PubMed]
16. Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, Stumvoll M, Kahn CR, Bluher M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A. 2009;106:8665–8670. [PubMed]
17. Roux AE, Leroux A, Alaamery MA, Hoffman CS, Chartrand P, Ferbeyre G, Rokeach LA. Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast. PLoS Genet. 2009;5:e1000408. [PMC free article] [PubMed]
18. Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free Radic Biol Med. 2007;43:477–503. [PubMed]
19. Bishop NA, Guarente L. Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet. 2007;8:835–844. [PubMed]
20. Kaeberlein M, Burtner CR, Kennedy BK. Recent developments in yeast aging. PLoS Genet. 2007;3:e84. [PMC free article] [PubMed]
21. Schieke SM, Finkel T. Mitochondrial signaling, TOR, and life span. Biol Chem. 2006;387:1357–1361. [PubMed]
22. Blagosklonny MV, Hall MN. Growth and aging: a common molecular mechanism. Aging. 2009;1:357–362. [PMC free article] [PubMed]
23. Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD. Regulation of longevity and stress resistance by Sch9 in yeast. Science. 2001;292:288–290. [PubMed]
24. Wei M, Fabrizio P, Hu J, Ge H, Cheng C, Li L, Longo VD. Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet. 2008;4:e13. [PMC free article] [PubMed]
25. Roux AE, Quissac A, Chartrand P, Ferbeyre G, Rokeach LA. Regulation of chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2. Aging Cell. 2006;5:345–357. [PubMed]
26. Lavoie H, Whiteway M. Increased respiration in the sch9Delta mutant is required for increasing chronological life span but not replicative life span. Eukaryot Cell. 2008;7:1127–1135. [PMC free article] [PubMed]
27. Hoffman CS. Glucose sensing via the protein kinase A pathway in Schizosaccharomyces pombe. Biochem Soc Trans. 2005;33:257–260. [PMC free article] [PubMed]
28. Hoffman CS, Winston F. Glucose repression of transcription of the Schizosaccharomyces pombe fbp1 gene occurs by a cAMP signaling pathway. Genes Dev. 1991;5:561–571. [PubMed]
29. Neely LA, Hoffman CS. Protein kinase A and mitogen-activated protein kinase pathways antagonistically regulate fission yeast fbp1 transcription by employing different modes of action at two upstream activation sites. MolCell Biol. 2000;20:6426–6434. [PMC free article] [PubMed]
30. Su SS, Tanaka Y, Samejima I, Tanaka K, Yanagida M. A nitrogen starvation-induced dormant G0 state in fission yeast: the establishment from uncommitted G1 state and its delay for return to proliferation. J Cell Sci. 1996;109 ( Pt 6):1347–1357. [PubMed]
31. Sajiki K, Hatanaka M, Nakamura T, Takeda K, Shimanuki M, Yoshida T, Hanyu Y, Hayashi T, Nakaseko Y, Yanagida M. Genetic control of cellular quiescence in S. pombe. J Cell Sci. 2009;122:1418–1429. [PubMed]
32. Yanagida M. Cellular quiescence: are controlling genes conserved. Trends Cell Biol. 2009;19:705–715. [PubMed]
33. Maruyama J, Naguro I, Takeda K, Ichijo H. Stress-activated MAP kinase cascades in cellular senescence. Curr Med Chem. 2009;16:1229–1235. [PubMed]
34. Chaudhuri AR, de Waal EM, Pierce A, Van Remmen H, Ward WF, Richardson A. Detection of protein carbonyls in aging liver tissue: A fluorescence-based proteomic approach. Mech Ageing Dev. 2006;127:849–861. [PubMed]

Articles from Aging (Albany NY) are provided here courtesy of Impact Journals, LLC