Search tips
Search criteria 


Logo of biolettersThe Royal Society PublishingBiology LettersAboutBrowse By SubjectAlertsFree Trial
Biol Lett. 2010 June 23; 6(3): 406–409.
Published online 2010 January 24. doi:  10.1098/rsbl.2009.1073
PMCID: PMC2880068

Antennal regulation of migratory flight in the neotropical moth Urania fulgens


Migrating insects use their sensory systems to acquire local and global cues about their surroundings. Previous research on tethered insects suggests that, in addition to vision and cephalic bristles, insects use antennal mechanosensory feedback to maintain their airspeeds. Owing to the large displacements of migratory insects and difficulties inherent in tracking single individuals, the roles of these sensory inputs have never been tested in freely migrating insects. We tracked individual uraniid moths (Urania fulgens) as they migrated diurnally over the Panama Canal, and measured airspeeds and orientation for individuals with either intact or amputated flagella. Consistent with prior observations that antennal input is necessary for flight control, 59 per cent of the experimental moths could not fly after flagella amputation. The remaining fraction (41%) was flight-capable and maintained its prior airspeeds despite severe reduction in antennal input. Thus, maintenance of airspeeds may not involve antennal input alone, and is probably mediated by other modalities. Moths with amputated flagella could not recover their proper migratory orientations, suggesting that antennal integrity is necessary for long-distance navigation.

Keywords: insect migration, antenna, flight

Articles from Biology Letters are provided here courtesy of The Royal Society