PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of ijurolIndian Journal of UrologyCurrent IssueInstructions for ContributorsSubmit articles
 
Indian J Urol. 2010 Jan-Mar; 26(1): 108–114.
PMCID: PMC2878420

Management of poor-prognosis testicular germ cell tumors

Abstract

Currently, the outcome of patients with intermediate-and poor-risk germ cell tumors at diagnosis is optimized by the use of risk-appropriate chemotherapy and post-chemotherapy surgical resection of residual masses. Currently, there is no role for high-dose chemotherapy in the first-line setting. Patients who progress on first-line chemotherapy or who relapse after an initial complete response also have a poor prognosis. In the setting of early relapse, the standard approach at most centers is conventional-dose, ifosfamide-based regimens and post-chemotherapy resection of residual masses. The treatment of patients with late relapse is complete surgical resection whenever feasible. Salvage chemotherapy for late relapse may be used prior to surgery in patients where a complete resection is not feasible. A complete surgical resection of all residual sites of disease after chemotherapy is critical for the prevention of relapse and the long-term survival of patients with advanced germ cell tumors.

Keywords: Testicular neoplasms, neoplasms, germ cell and embryonal, antineoplastic combined chemotherapy protocols, retroperitoneum, lymph node excision, prognosis, risk factors, salvage therapy

INTRODUCTION

In the United States, testicular germ cell tumor (GCT) is the most common malignancy among men aged 20-40 years. With the development of cisplatin-based chemotherapy and the integration of surgery, GCTs have become a model of a curable neoplasm.[1] In the pre-cisplatin era, cure rate for patients with advanced GCT was 5-10%. Currently, the long-term survival for men with advanced GCT is 80-90%. While the outcome for the vast majority of GCT patients is favorable, an estimated 380 men will die from testis cancer in 2009 in the United States.[2] Any mortality from GCT is a tragic occurrence given the relative young age of this patient population. The average years of potential life lost per GCT death is 33 years, which is among the highest of all adult cancers.[3]

Mortality from GCT is due to inherent resistance to platin-based chemotherapy and the failure to clear all residual sites of disease after chemotherapy in the early treatment stages with omitted or improper post-chemotherapy surgery (PCS). The survival of patients with advanced GCT has improved over the past three decades which is attributed, in part, to improved risk stratification, delivery of risk-appropriate chemotherapy, improvements in second-line chemotherapy, expanding the role of PCS, and reduced treatment-related mortality.[4,5]

At diagnosis, approximately 50% and 5% of nonseminoma (NSGCT) and seminoma patients, respectively have evidence of bulky retroperitoneal or distant metastases, respectively. A small subset of patients with very high levels of the serum tumor markers (STM) alpha-fetoprotein (AFP), human choriogonadotropin (HCG), and lactate dehydrogenase (LDH), non-pulmonary visceral metastases, and mediastinal extragondal NSGCT have a poor prognosis which influences the choice of chemotherapy regimen and number of cycles. Other poor prognostic categories include those with malignant GCT at residual sites of disease after chemotherapy (particularly if an incomplete surgical resection is performed), patients with an incomplete response to first-line chemotherapy, and those who relapse after an initial complete response. The management of these patients has evolved considerably since the development of cisplatin-vinblastine-bleomycin (PVB), the initial cisplatin-based regimen. In this article, we will review the current management approaches for poor-prognosis patients at diagnosis, following chemotherapy, and at the time of early (< two years) and late (> two years) relapse.

Poor-Prognosis GCT at Diagnosis

The prognostic classification of GCT patients at diagnosis is based on the International Germ Cell Cancer Collaborative Group (IGCCCG) criteria.[4] An international, retrospective pool of 5,202 patients with advanced NSGCT treated between 1975 and 1990 with platin-containing chemotherapy regimens was analyzed for prognostic factors for recurrence and survival. AFP, HCG, and LDH levels at the initiation of chemotherapy, the presence of non-pulmonary visceral metastasis, and primary mediastinal NSGCT were significant and independent prognostic factors for progression and survival.[4] In 660 patients with advanced seminoma, only the presence of non-pulmonary visceral metastasis was associated with survival.[4] Based on this analysis, the IGCCCG risk classification was developed [Table 1]. Approximately 28% and 16% of advanced NSGCT patients are classified as intermediate-and poor-risk by IGCCCG criteria and the five-year progression-free and overall survival rates for these patients is 75% and 80%, and 41% and 48%, respectively. Van Dijk et al. recently published a meta-analysis of 10 studies of 1775 NSGCT patients treated after 1989 and reported a substantially improved five-year survival of 83% and 71% for intermediate-and poor-risk patients.[5] There is no poor-risk category for advanced seminoma and approximately 10% are classified as intermediate-risk and the five-year survival for these patients is 72%.[4]

Table 1
International germ cell cancer collaborative group risk classification for advanced GCT.[4]

Since 1987, the standard approach for advanced GCT patients with intermediate-and poor-risk features has been BEPx4 chemotherapy after it was shown to have similar survival to PVBx4 but less neuromuscular toxicity.[6] Etoposide (VP-16)-ifosfamide-cisplatin (VIPx4) has been compared to BEPx4 in two randomized trials. The US trial failed to demonstrate a significant benefit of VIPx4 over BEPx4; the five-year survival (57% vs. 62%) was not significantly different but VIPx4 was associated with more serious hematological and genitourinary toxicity.[7,8] With 84 patients enrolled in the European trial, there were two GCT deaths in the BEPx4 arm and one in the VIPx4 arm, and overall survival at five years exceeded 80 percent.[9] Thus, BEPx4 has remained the standard regimen for intermediate-and poor-risk GCT.

High-dose chemotherapy (HDCT) using carboplatin-etoposide ± cyclophosphamide (CEC) with autologous stem cell support (also termed stem-cell rescue) has been investigated as an alternative to BEPx4 in patients with poor-prognosis GCT.[1014] HDCT is based on the rationale that increasing dosage may overcome platin resistance. Carboplatin is used in HDCT regimens because of dose-limiting nephrotoxicity and neuropathy with cisplatin. A randomized trial of BEPx4 vs. BEPx2 plus two cycles of high-dose CEC in 219 patients with intermediate-(21%) and poor-risk GCT (79%) showed no significant difference in the one-year durable complete response rate (48% vs.52%, P=0.5) or overall survival.[15] The five-year survival for patients in both arms was 71% but toxicity was more severe for patients receiving HDCT. A smaller randomized trial also failed to demonstrate an improved survival with HDCT compared to standard-dose regimens as first-line therapy for patients with poor-prognosis metastatic GCT.[16] BEPx4 remains the standard first-line regimen in patients with intermediate-and poor-risk disease given the lack of superiority with ifosfamide-based standard-dose or high-dose regimens.

Poor-Prognosis GCT after First-Line Chemotherapy

After first-line chemotherapy, approximately 5-15% of patients have disease progression or persistent marker elevation and these patients are managed with second-line chemotherapy (discussed later).[1720] There is clear consensus that patients with marker normalization but with residual masses > 1 cm should undergo PCS.[2124] The histology of resected specimens will demonstrate necrosis, teratoma, and viable malignancy (with or without teratoma) in 40%, 45%, and 15% of cases respectively.[18,19,2534]

Compared to patients with necrosis or teratoma in PCS specimens, the presence of viable malignancy is associated with a poor outcome with reported five-year survival rates of 45-77% in patients who undergo a complete resection.[2628,3133,3538] The role of postoperative chemotherapy in this setting is controversial. Fox et al., reported that 14 of 27 patients (70%) undergoing PCS for viable malignancy were free of recurrence with adjuvant chemotherapy versus 0 of 7 patients who were observed.[36] In an international pooled analysis of 238 patients with viable malignancy in PCS specimens, Fizazi et al., identified pre-chemotherapy IGCCCG intermediate-and poor-risk disease, incomplete resection, and greater than 10% viable malignancy in PCS specimens as important prognostic factors.[35] Patients with 0, 1, and 2-3 risk factors had a five-year overall survival of 100%, 83%, and 51%, respectively. Overall, a significant improvement in five-year relapse-free survival was observed with postoperative chemotherapy (73% vs. 64%, P<0.001), but no difference in five-year overall survival (74% vs. 70%, P=0.7). In a subset analysis, patients with one risk factor had an improved five-year survival with postoperative chemotherapy (88% vs. 56%, P=0.02) but those with 0 (100% survival, with or without chemotherapy) and two to three risk factors (55% vs. 60%) did not. In a confirmatory study, this prognostic index was validated for relapse-free and overall survival and no significant difference in these endpoints was observed among the patients who did and did not receive postoperative chemotherapy.[38] A complete resection of residual masses is the most critical determinant of outcome for patients with viable malignancy in PCS specimens. Immediate postoperative chemotherapy or surveillance may be reasonable options depending on the completeness of resection, IGCCCG risk group, and percent of viable cells.

Approximately, 6-8% of PCS specimens will contain evidence of non-germ cell tumor malignancy, arising from malignant transformation of teratoma.[33,39,40] As with viable malignant GCT, the outcome of patients with malignant transformation is related to the completeness of surgical resection as they are generally resistant to GCT-specific chemotherapy regimens. With complete resection, approximately 50-66% of patients will survive, whereas the prognosis of those who have an incomplete resection is dismal.[3943] Chemotherapy specific to the transformed histology (e.g. sarcoma-specific regimen) has been investigated in two small series in select patients with measurable disease limited to one histology. Partial responses were observed in a total of 11 of 24 patients, six of whom are alive with PCS.[44,45]

Early Post-Chemotherapy GCT Relapse

Men who relapse after previously receiving first-line chemotherapy are treated with second-line chemotherapy. The majority of relapses will occur within two years of completing initial treatment and these are classified as early relapse.[7,9,15,46,47] Patients who fail to achieve a complete response to first-line therapy or who relapse within six months of achieving a complete response (termed incomplete responders) have a particularly poor prognosis.[48] In an international pooled analysis of 1984 patients from 38 centers with relapse after first-line chemotherapy, incomplete response to induction chemotherapy, primary mediastinal NSGCT, non-pulmonary visceral metastasis, and elevated serum tumor markers were associated with increased risk of progression with second-line chemotherapy. Overall, the three-year progression-free and overall survival was 38% and 51%, respectively.[14]

Conventional-dose regimens that have been studied in the second-and third-line settings include VIPx4, vinblastine-etoposide-cisplatin (VeIPx4; in men who had received prior etoposide from BEP regimens), and paclitaxel-ifosfamide-cisplatin (TIPx4). Studies of VIPx4 and VeIPx4 reported long-term remission rates of 23-35% and overall survival rates of 32-53%.[4951] With TIPx4, relapse-free survival has been reported in 36-47% of patients.[5254] TIPx4, VIPx4, and VeIPx4 have never been compared in a randomized trial and all are considered standard second-line regimens.

HDCT has also been investigated as second-line therapy in patients with GCT relapse, although its role in this setting is controversial. Indiana University has the largest, single-institution experience involving 184 patients with progression after first-(73%) or second-line chemotherapy (27%), 94% of whom received two or more courses of HDCT.[12] Over a median follow-up of four years, 63% of patients were continuously disease-free, including 70% and 45% of patients who received HDCT as second-and third-line therapy, respectively. An international matched-pair analysis comparing 74 patients treated at a single institution who received two to three cycles of VIP followed by one cycle of HDCT using carboplatin-etoposide-ifosfamide to 119 patients treated at multiple centers throughout Europe who received standard-dose, second-line chemotherapy using a variety of regimens, reported a 10% improvement in event-free and overall survival with HDCT.[55]

HDCT was compared to standard-dose, second-line chemotherapy in a randomized controlled trial enrolling 280 patients from 43 institutions. Patients in the standard-dose arm received VIPx4 or VeIPx4 and the HDCT arm received VIP/VeIPx3 followed by one cycle of high-dose CEC.[50] Over a median follow-up of 45 months, there were no significant differences in complete and partial response rates (56% in both arms) or the three-year event-free (35% vs. 42%, P=0.16) and overall survival (53% in both arms).

There are several potential explanations for the lack of benefit of HDCT in the randomized trial despite the favorable results reported in the two non-randomized studies. First, the results from single-arm trials may be subject to selection bias from differences in case-mix. In addition, the results achieved at high-volume institutions with unique experience with HDCT may not be reproducible at other institutions. Alternatively, the treatment strategy employed in the randomized trial may have been suboptimal in that three cycles of standard-dose chemotherapy and only one cycle of HDCT were given. In the randomized trial, only 73% of patients assigned HDCT were able to receive it and toxic deaths on the HDCT arm were twice as common as the standard-dose arm (7% vs. 3%). In the Indiana University series, 94% of patients were able to receive two cycles of HDCT and the treatment-related death rate was 2.7%. While HDCT as second-line therapy can cure a significant number of patients, the failure to demonstrate an improvement in survival compared to standard-dose regimens in three randomized trials (two as first-line therapy and one as second-line therapy) suggests it should not be considered a standard approach. Currently, HDCT should only be offered at specialized centers.

Patients with serologic complete response to second-line chemotherapy with residual masses should undergo post-salvage chemotherapy surgical resection (PSCS). A complete resection of residual masses is feasible in only 56-72% of patients (compared to 85% or more after first-line therapy).[18,28,32,36,56] Viable malignancy, teratoma, and necrosis are found in 53%, 21%, and 26% of PSCS specimens, respectively. The reported five-year overall survival is 44-61%.[28,32,36,37] Patients with viable malignancy in PSCS specimens have a particularly poor prognosis and their survival is not improved with the use of postoperative chemotherapy.

Patients with progressive disease despite second-or third-line chemotherapy have a dismal prognosis. However, a highly select group of patients with rising STMs who are deemed to have resectable disease limited to a single site (usually the retroperitoneum) may be candidates for salvage surgery, commonly referred to as “desperation surgery”. Although published studies are limited to small, single-institution case series, 47-60% will have normalization of serum tumor markers postoperatively and long-term survival is reported in 33-57% of patients after desperation surgery +/-postoperative chemotherapy.[5761]

Late Post-Chemotherapy GCT Relapse

Late relapse after chemotherapy is defined as that occurring more than two years after treatment. Roughly, 3% of advanced GCT patients experience a late relapse.[62,63] The histology of late relapse is viable malignancy in 54-88%, teratoma in 12-28%, and malignant transformation in 10-20%.[47,6467] Given that the majority of late relapses occur in the retroperitoneum (50-72%), failure to control the retroperitoneum in the initial treatment phase appears to be the greatest risk factor.[62,6468] Until recently, late relapse has been associated with a worse prognosis than early relapses, though contemporary data suggests these patients may have a similar probability of cure. In general, late relapse is resistant to chemotherapy and the outcome is related to the ability to render patients disease-free by complete surgical resection.[62,6569]

The importance of surgery is related to the fact that teratoma and malignant transformation are inherently chemo-insensitive and viable malignancy is usually present in the setting of prior chemotherapy (thereby, platin-resistant). Of 32 patients with late relapse at Indiana University who received chemotherapy, only six (19%) achieved a complete response and five of these are in complete remission (three of whom were chemotherapy-naïve). Post-chemotherapy surgery successfully rendered 18 (69%) of the remaining 26 patients free of disease, 12 (46%) of whom remained in complete remission. Thus, 72% of patients treated with chemotherapy (+/-surgery) were rendered disease-free and 53% are in complete remission. Of the 49 patients treated initially with surgery, 45 (92%) were rendered free of disease overall (22[45%] by surgery alone), 29 (59%) are in complete remission. Overall, 69 (85%) patients achieved a disease-free state and 58% are disease-free over a median follow-up of 25 months.[65] In the Memorial Sloan-Kettering experience, the five-year cancer-specific survival was 60% and patients who had a complete surgical resection at the time of late relapse (60%) had a significantly improved survival compared to those without complete resection (40%) (79% vs. 36%, P<0.001).[67] The presence of symptoms and multifocal disease at late relapse were associated with inferior survival. In a German study of 72 NSGCT patients with late relapse (71% of whom had received prior chemotherapy), 35 (49%) were in complete remission at last follow-up, most of whom were treated with a combination of chemotherapy and surgery.[68] The most favorable chemotherapy results for late relapse are with the TIP regimen. A study from Memorial Sloan-Kettering reported that seven of 14 patients achieved a durable complete response to TIP plus surgical resection.[52] An aggressive surgical approach with complete resection of all sites of disease is the most important component to the cure of patients with late relapse. Chemotherapy may be considered as the initial management strategy if STMs are elevated or if an initial surgical complete resection is not feasible.

Re-operative Retroperitoneal Lymph Node Dissection

Patients who have an incomplete resection of residual viable malignancy after first-line chemotherapy have a dismal prognosis. Likewise, patients who relapse in the retroperitoneum after PC-RPLND are similarly disadvantaged in terms of their ability to be salvaged by second-line chemotherapy and/or surgery. In the Indiana University experience, the relapse rate after redo-RPLND was 52% (compared to 21% after initial PC-RPLND) and the disease-free survival was 55%.[37] In the Memorial Sloan-Kettering experience, the five-year cancer-specific survival after redo-RPLND after initial PC-RPLND was 56%.[70]

SUMMARY

Currently, the outcome of patients with intermediate-and poor-risk GCT at diagnosis is optimized by the use of risk-appropriate chemotherapy and post-chemotherapy surgical resection of residual masses at all anatomic sites of disease. Currently, there is no role for HDCT in the first-line setting. Patients who progress on first-line chemotherapy or who relapse after an initial complete response also have a poor prognosis. In the setting of early relapse, the standard approach at most centers is conventional-dose, ifosfamide-based regimens (TIPx4 or VeIPx4) and post-chemotherapy resection of residual masses. The treatment of patients with late relapse is complete surgical resection whenever feasible. Salvage chemotherapy for late relapse may be used prior to surgery in patients where a complete resection is not feasible.

A critical component to the cure of patients with advanced GCT is the complete resection of all residual disease elements after chemotherapy. The poor outcome of patients with early and late relapsed GCT and re-operative RPLND demonstrates the lethal consequences that may arise from the failure to eradicate all residual disease elements after initial chemotherapy by omitting PCS or failing to perform a complete resection. It would appear that observation after first-line chemotherapy is acceptable only for the 25% of patients who achieve a complete response, yet rates of PCS in published series typically range from 26-51%.[1820,46,71,72] In several series, between 16-41% of patients with residual masses failed to undergo PCS.[18,20,46,71] Incomplete resection may result from approaches that involve resection of the residual mass only, the use of unilateral modified templates (particularly those that omit the para-aortic region for right-sided tumors and the interaortocaval region for left-sided tumors), and/or the lack of surgeon experience or resolve.[73] The importance of PCS was highlighted in a randomized trial of BEPx3 vs. EPx4 in 257 men with good-risk metastatic NSGCT.[46] As part of this trial, PCS was not dictated by protocol and only 52% underwent PCS, which frequently involved resection of the residual mass only. Overall, 14 of 20 (70%) relapsing patients and seven of 14 (50%) of those who died from GCT either did not undergo PCS or relapsed in the retroperitoneum after an inadequate RPLND. This study and others suggest that a substantial proportion of deaths from GCT may be prevented by the appropriate integration of chemotherapy and surgery.[71]

Footnotes

Source of Support: Nil

Conflict of Interest: None declared.

REFERENCES

1. Einhorn LH. Testicular cancer as a model for a curable neoplasm: The Richard and Hinda Rosenthal Foundation Award Lecture. Cancer Res. 1981;41:3275–80. [PubMed]
2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, CA Cancer J Clin ;59. 2009;2009:225–49. [PubMed]
3. Friman PC, Finney JW, Leibowitz JM. Years of potential life lost: Evaluating premature cancer death in men. J Community Health. 1989;14:101–6. [PubMed]
4. International Germ Cell Cancer Collaborative Group. International Germ Cell Consensus Classification: A prognostic factor-based staging system for metastatic germ cell cancers. J Clin Oncol. 1997;15:594–603.. [PubMed]
5. van Dijk MR, Steyerberg EW, Habbema JD. Survival of non-seminomatous germ cell cancer patients according to the IGCC classification: An update based on meta-analysis. Eur J Cancer. 2006;42:820–6. [PubMed]
6. Williams SD, Birch R, Einhorn LH, Irwin L, Greco FA, Loehrer PJ. Treatment of disseminated germ-cell tumors with cisplatin, bleomycin, and either vinblastine or etoposide. N Engl J Med. 1987;316:1435–40. [PubMed]
7. Nichols CR, Catalano PJ, Crawford ED, Vogelzang NJ, Einhorn LH, Loehrer PJ. Randomized comparison of cisplatin and etoposide and either bleomycin or ifosfamide in treatment of advanced disseminated germ cell tumors: An Eastern Cooperative Oncology Group, Southwest Oncology Group, and Cancer and Leukemia Group B Study. J Clin Oncol. 1998;16:1287–93. [PubMed]
8. Hinton S, Catalano PJ, Einhorn LH, Nichols CR, David Crawford E, Vogelzang N, et al. Cisplatin, etoposide and either bleomycin or ifosfamide in the treatment of disseminated germ cell tumors: Final analysis of an intergroup trial. Cancer. 2003;97:1869–75. [PubMed]
9. de Wit R, Stoter G, Sleijfer DT, Neijt JP, ten Bokkel Huinink WW, de Prijck L, et al. Four cycles of BEP vs four cycles of VIP in patients with intermediate-prognosis metastatic testicular non-seminoma: A randomized study of the EORTC Genitourinary Tract Cancer Cooperative Group; European Organization for Research and Treatment of Cancer. Br J Cancer. 1998;78:828–32. [PMC free article] [PubMed]
10. Beyer J, Kramar A, Mandanas R, Linkesch W, Greinix A, Droz JP, et al. High-dose chemotherapy as salvage treatment in germ cell tumors: A multivariate analysis of prognostic variables. J Clin Oncol. 1996;14:2638–45. [PubMed]
11. Bokemeyer C, Kollmannsberger C, Flechon A. Pronostic factors in patients (PTS) with advanced metastatic seminoma (SEM) treated with either single agent carboplatin (CP) or cisplatin-based (DDP) combination chemotherapy (CTX): A meta-analysis of prospective European trials. Proc Am Soc Clin Oncol. 2002;21:740. abstract 5030.
12. Einhorn LH, Williams SD, Chamness A, Brames MJ, Perkins SM, Abonour R. High-dose chemotherapy and stem-cell rescue for metastatic germ-cell tumors. N Engl J Med. 2007;357:340–8. [PubMed]
13. Kondagunta GV, Bacik J, Sheinfeld J, Bajorin D, Bains M, Reich L, et al. Paclitaxel plus Ifosfamide followed by high-dose carboplatin plus etoposide in previously treated germ cell tumors. J Clin Oncol. 2007;25:85–90. [PubMed]
14. Lorch A, Beyer J, Mollevi C. Prognostic factors in relapsed or refractory germ cell tumors. J Clin Oncol ;:abstract. 2009;27:5030.
15. Motzer RJ, Nichols CJ, Margolin K A, Bacik J, Richardson PG, Vogelzang NJ, et al. Phase III randomized trial of conventional-dose chemotherapy with or without high-dose chemotherapy and autologous hematopoietic stem-cell rescue as first-line treatment for patients with poor-prognosis metastatic germ cell tumors. J Clin Oncol. 2007;25:247–56. [PubMed]
16. Droz JP, Kramar A, Biron P, Pico JL, Kerbrat P, Pény J. Failure of high-dose cyclophosphamide and etoposide combined with double-dose cisplatin and bone marrow support in patients with high-volume metastatic nonseminomatous germ-cell tumours: Mature results of a randomised trial. Eur Urol. 2007;51:739–46. discussion 747-8. [PubMed]
17. Einhorn LH, Williams SD, Loehrer PJ, Birch R, Drasga R, Omura G, et al. Evaluation of optimal duration of chemotherapy in favorable-prognosis disseminated germ cell tumors: A Southeastern Cancer Study Group protocol. J Clin Oncol. 1989;7:387–91. [PubMed]
18. Debono DJ, Heilman DK, Einhorn LH, Donohue JP. Decision analysis for avoiding postchemotherapy surgery in patients with disseminated nonseminomatous germ cell tumors. J Clin Oncol. 1997;15:1455–64. [PubMed]
19. de Wit R, Stoter G, Kaye SB, Sleijfer DT, Jones WG, ten Bokkel Huinink WW, et al. Importance of bleomycin in combination chemotherapy for good-prognosis testicular nonseminoma: A randomized study of the European Organization for Research and Treatment of Cancer Genitourinary Tract Cancer Cooperative Group. J Clin Oncol. 1997;15:1837–43. [PubMed]
20. Mead GM, Stenning SP, Parkinson MC, Horwich A, Fossa SD, Wilkinson PM, et al. The Second Medical Research Council study of prognostic factors in nonseminomatous germ cell tumors: Medical Research Council Testicular Tumour Working Party. J Clin Oncol. 1992;10:85–94. [PubMed]
21. Motzer RJ, Bolger GB, Boston B, Carducci MA, Fishman M, Hancock SL, et al. Testicular cancer: Clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2006;4:1038–58. [PubMed]
22. Albers P, Albrecht W, Algaba F, Bokemeyer C, Cohn-Cedermark G, Horwich A, et al. Guidelines on testicular cancer. Eur Urol. 2005;48:885–94. [PubMed]
23. Krege S, Beyer J, Souchon R, Albers P, Albrecht W, Algaba F, et al. European Consensus Conference on Diagnosis and Treatment of Germ Cell Cancer: A Report of the Second Meeting of the European Germ Cell Cancer Consensus Group (EGCCCG): Part II. Eur Urol. 2008;53:497–513. [PubMed]
24. Schmoll HJ, Jordan K, Huddart R, Laguna MP, Horwich A, Fizazi K, et al. Testicular non-seminoma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol ;:iv. 2009;20:89–96. [PubMed]
25. Albers P, Weissbach L, Krege S, Kliesch S, Hartmann M, Heidenreich A, et al. Prediction of necrosis after chemotherapy of advanced germ cell tumors: Results of a prospective multicenter trial of the German Testicular Cancer Study Group. J Urol. 2004;171:1835–8. [PubMed]
26. Carver BS, Serio AM, Bajorin D, Motzer RJ, Stasi J, Bosl GJ, et al. Improved clinical outcome in recent years for men with metastatic nonseminomatous germ cell tumors. J Clin Oncol. 2007;25:5603–8. [PubMed]
27. Gerl A, Clemm C, Schmeller N, Dienemann H, Lamerz R, Kriegmair M, et al. Outcome analysis after postchemotherapy surgery in patients with non-seminomatous germ cell tumours. Ann Oncol. 1995;6:483–8. [PubMed]
28. Hartmann JT, Schmoll HJ, Kuczyk MA, Candelaria M, Bokemeyer C. Postchemotherapy resections of residual masses from metastatic non-seminomatous testicular germ cell tumors. Ann Oncol. 1997;8:531–8. [PubMed]
29. Hendry WF, Norman AR, Dearnaley DP, Fisher C, Nicholls J, Huddart RA, et al. Metastatic nonseminomatous germ cell tumors of the testis: Results of elective and salvage surgery for patients with residual retroperitoneal masses. Cancer. 2002;94:1668–76. [PubMed]
30. Sonneveld DJ, Sleijfer DT, Koops HS, Keemers-Gels ME, Molenaar WM, Hoekstra HJ. Mature teratoma identified after postchemotherapy surgery in patients with disseminated nonseminomatous testicular germ cell tumors: A plea for an aggressive surgical approach. Cancer. 1998;82:1343–51. [PubMed]
31. Spiess PE, Brown GA, Pisters LL, Liu P, Tu SM, Evans JG, et al. Viable malignant germ cell tumor in the postchemotherapy retroperitoneal lymph node dissection specimen: Can it be predicted using clinical parameters? Cancer. 2006;107:1503–10. [PubMed]
32. Stenning SP, Parkinson MC, Fisher C, Mead GM, Cook PA, Fossa SD, et al. Postchemotherapy residual masses in germ cell tumor patients: Content, clinical features, and prognosis: Medical Research Council Testicular Tumour Working Party. Cancer. 1998;83:1409–19. [PubMed]
33. Toner GC, Panicek DM, Heelan RT, Geller NL, Lin SY, Bajorin D, et al. Adjunctive surgery after chemotherapy for nonseminomatous germ cell tumors: Recommendations for patient selection. J Clin Oncol. 1990;8:1683–94. [PubMed]
34. Steyerberg EW, Keizer HJ, Fossa SD, Sleijfer DT, Toner GC, Schraffordt Koops H, et al. Prediction of residual retroperitoneal mass histology after chemotherapy for metastatic nonseminomatous germ cell tumor: Multivariate analysis of individual patient data from six study groups. J Clin Oncol. 1995;13:1177–87. [PubMed]
35. Fizazi K, Tjulandin S, Salvioni R, Germà-Lluch JR, Bouzy J, Ragan D, et al. Viable malignant cells after primary chemotherapy for disseminated nonseminomatous germ cell tumors: Prognostic factors and role of postsurgery chemotherapy-results from an international study group. J Clin Oncol. 2001;19:2647–57. [PubMed]
36. Fox EP, Weathers TD, Williams SD, Loehrer PJ, Ulbright TM, Donohue JP, et al. Outcome analysis for patients with persistent nonteratomatous germ cell tumor in postchemotherapy retroperitoneal lymph node dissections. J Clin Oncol. 1993;11:1294–9. [PubMed]
37. Donohue JP, Leviovitch I, Foster RS, Baniel J, Tognoni P. Integration of surgery and systemic therapy: Results and principles of integration. Semin Urol Oncol. 1998;16:65–71. [PubMed]
38. Fizazi K, Oldenburg J, Dunant A, et al. Assessing prognosis and optimizing treatment in patients with postchemotherapy viable nonseminomatous germ-cell tumors (NSGCT): Results of the sCR2 international study. Ann Oncol. 2008;19:259–64. [PubMed]
39. Carver BS, Shayegan B, Serio A, Motzer RJ, Bosl GJ, Sheinfeld J. Long-term clinical outcome after postchemotherapy retroperitoneal lymph node dissection in men with residual teratoma. J Clin Oncol. 2007;25:1033–7. [PubMed]
40. Little JS, Jr, Foster RS, Ulbright TM, Donohue JP. Unusual neoplasms detected in testis cancer patients undergoing post-chemotherapy retroperitoneal lymphadenectomy. J Urol. 1994;152:1144–9. [PubMed]
41. Motzer RJ, Amsterdam A, Prieto V, Sheinfeld J, Murty VV, Mazumdar M, et al. Teratoma with malignant transformation: Diverse malignant histologies arising in men with germ cell tumors. J Urol. 1998;159:133–8. [PubMed]
42. Lutke Holzik MF, Hoekstra HJ, Mulder NH, Suurmeijer AJ, Sleijfer DT, Gietema JA. Non-germ cell malignancy in residual or recurrent mass after chemotherapy for nonseminomatous testicular germ cell tumor. Ann Surg Oncol. 2003;10:131–5. [PubMed]
43. Comiter CV, Kibel AS, Richie JP, Nucci MR, Renshaw AA. Prognostic features of teratomas with malignant transformation: A clinicopathological study of 21 cases. J Urol. 1998;159:859–63. [PubMed]
44. Donadio AC, Motzer RJ, Bajorin DF, Kantoff PW, Sheinfeld J, Houldsworth J, et al. Chemotherapy for teratoma with malignant transformation. J Clin Oncol. 2003;21:4285–91. [PubMed]
45. El Mesbahi O, Terrier-Lacombe MJ, Rebischung C, Theodore C, Vanel D, Fizazi K. Chemotherapy in patients with teratoma with malignant transformation. Eur Urol. discussion 1311-2. [PubMed]
46. Culine S, Kerbrat P, Kramar A, Théodore C, Chevreau C, Geoffrois L, et al. Refining the optimal chemotherapy regimen for good-risk metastatic nonseminomatous germ-cell tumors: A randomized trial of the Genito-Urinary Group of the French Federation of Cancer Centers (GETUG T93BP) Ann Oncol. 2007;18:917–24. [PubMed]
47. Michael H, Lucia J, Foster RS, Ulbright TM. The pathology of late recurrence of testicular germ cell tumors. Am J Surg Pathol. 2000;24:257–73. [PubMed]
48. Fossa SD, Stenning SP, Gerl A, Horwich A, Clark PI, Wilkinson PM, et al. Prognostic factors in patients progressing after cisplatin-based chemotherapy for malignant non-seminomatous germ cell tumours. Br J Cancer. 1999;80:1392–9. [PMC free article] [PubMed]
49. Loehrer PJ Sr, Gonin R, Nichols CR, Weathers T, Einhorn LH. Vinblastine plus ifosfamide plus cisplatin as initial salvage therapy in recurrent germ cell tumor. J Clin Oncol. 1998;16:2500–4. [PubMed]
50. Pico JL, Rosti G, Kramar A, Wandt H, Koza V, Salvioni R, et al. A randomised trial of high-dose chemotherapy in the salvage treatment of patients failing first-line platinum chemotherapy for advanced germ cell tumours. Ann Oncol. 2005;16:1152–9. [PubMed]
51. McCaffrey JA, Mazumdar M, Bajorin DF, Bosl GJ, Vlamis V, Motzer RJ. Ifosfamide-and cisplatin-containing chemotherapy as first-line salvage therapy in germ cell tumors: Response and survival. J Clin Oncol. 1997;15:2559–63. [PubMed]
52. Kondagunta GV, Bacik J, Donadio A, Bajorin D, Marion S, Sheinfeld J, et al. Combination of paclitaxel, ifosfamide, and cisplatin is an effective second-line therapy for patients with relapsed testicular germ cell tumors. J Clin Oncol. 2005;23:6549–55. [PubMed]
53. Mardiak J, Salek T, Sycova-Mila Z, Obertová J, Hlavatá Z, Mego M, et al. Gemcitabine plus cisplatine and paclitaxel (GCP) in second-line treatment of germ cell tumors (GCT): A phase II study. Neoplasma. 2005;52:243–7. [PubMed]
54. Mead GM, Cullen MH, Huddart R, Harper P, Rustin GJ, Cook PA, et al. A phase II trial of TIP (paclitaxel, ifosfamide and cisplatin) given as second-line (post-BEP) salvage chemotherapy for patients with metastatic germ cell cancer: A medical research council trial. Br J Cancer. 2005;93:178–84. [PMC free article] [PubMed]
55. Beyer J, Stenning S, Gerl A, Fossa S, Siegert W. High-dose versus conventional-dose chemotherapy as first-salvage treatment in patients with non-seminomatous germ-cell tumors: A matched-pair analysis. Ann Oncol. 2002;13:599–605. [PubMed]
56. Eggener SE, Carver BS, Loeb S, Kondagunta GV, Bosl GJ, Sheinfeld J. Pathologic findings and clinical outcome of patients undergoing retroperitoneal lymph node dissection after multiple chemotherapy regimens for metastatic testicular germ cell tumors. Cancer. 2007;109:528–35. [PubMed]
57. Albers P, Ganz A, Hannig E, Miersch WD, Müller SC. Salvage surgery of chemorefractory germ cell tumors with elevated tumor markers. J Urol. 2000;164:381–4. [PubMed]
58. Beck SD, Foster RS, Bihrle R, Einhorn LH, Donohue JP. Outcome analysis for patients with elevated serum tumor markers at postchemotherapy retroperitoneal lymph node dissection. J Clin Oncol. 2005;23:6149–56. [PubMed]
59. Eastham JA, Wilson TG, Russell C, Ahlering TE, Skinner DG. Surgical resection in patients with nonseminomatous germ cell tumor who fail to normalize serum tumor markers after chemotherapy. Urology. 1994;43:74–80. [PubMed]
60. Murphy BR, Breeden ES, Donohue JP, Messemer J, Walsh W, Roth BJ, et al. Surgical salvage of chemorefractory germ cell tumors. J Clin Oncol. 1993;11:324–9. [PubMed]
61. Wood DP, Jr, Herr HW, Motzer RJ, Reuter V, Sogani PC, Morse MJ, et al. Surgical resection of solitary metastases after chemotherapy in patients with nonseminomatous germ cell tumors and elevated serum tumor markers. Cancer. 1992;70:2354–7. [PubMed]
62. Oldenburg J, Alfsen GC, Waehre H, Fosså SD. Late recurrences of germ cell malignancies: A population-based experience over three decades. Br J Cancer. 2006;94:820–7. [PMC free article] [PubMed]
63. Ronnen EA, Kondagunta GV, Bacik J, Marion S, Bajorin DF, Sheinfeld J, et al. Incidence of late-relapse germ cell tumor and outcome to salvage chemotherapy. J Clin Oncol. 2005;23:6999–7004. [PubMed]
64. Baniel J, Foster RS, Gonin R, Messemer JE, Donohue JP, Einhorn LH. Late relapse of testicular cancer. J Clin Oncol. 1995;13:1170–6. [PubMed]
65. George DW, Foster RS, Hromas RA, Robertson KA, Vance GH, Ulbright TM, et al. Update on late relapse of germ cell tumor: A clinical and molecular analysis. J Clin Oncol. 2003;21:113–22. [PubMed]
66. Gerl A, Clemm C, Schmeller N, Hentrich M, Lamerz R, Wilmanns W. Late relapse of germ cell tumors after cisplatin-based chemotherapy. Ann Oncol. 1997;8:41–7. [PubMed]
67. Sharp DS, Carver BS, Eggener SE, Kondagunta GV, Motzer RJ, Bosl GJ, et al. Clinical outcome and predictors of survival in late relapse of germ cell tumor. J Clin Oncol. 2008;26:5524–9. [PMC free article] [PubMed]
68. Dieckmann KP, Albers P, Classen J, De Wit M, Pichlmeier U, Rick O, et al. Late relapse of testicular germ cell neoplasms: A descriptive analysis of 122 cases. J Urol. 2005;173:824–9. [PubMed]
69. Shahidi M, Norman AR, Dearnaley DP, Nicholls J, Horwich A, Huddart RA. Late recurrence in 1263 men with testicular germ cell tumors: Multivariate analysis of risk factors and implications for management. Cancer. 2002;95:520–30. [PubMed]
70. McKiernan JM, Motzer RJ, Bajorin DF, Bacik J, Bosl GJ, Sheinfeld J. Reoperative retroperitoneal surgery for nonseminomatous germ cell tumor: Clinical presentation, patterns of recurrence, and outcome. Urology. 2003;62:732–6. [PubMed]
71. Dearnaley DP, Horwich A, A'Hern R, Nicholls J, Jay G, Hendry WF, et al. Combination chemotherapy with bleomycin, etoposide and cisplatin (BEP) for metastatic testicular teratoma: Long-term follow-up. Eur J Cancer. 1991;27:684–91. [PubMed]
72. Kollmannsberger C, Daneshmand S, So A, Chi KN, Murray N, Moore C, et al. Management of disseminated nonseminomatous germ cell tumors with risk-based chemotherapy followed by response-guided postchemotherapy surgery. J Clin Oncol. 2010;28:537–42. [PubMed]
73. Carver BS, Shayegan B, Eggener S, Stasi J, Motzer RJ, Bosl GJ, et al. Incidence of metastatic nonseminomatous germ cell tumor outside the boundaries of a modified postchemotherapy retroperitoneal lymph node dissection. J Clin Oncol. 2007;25:4365–9. [PubMed]

Articles from Indian Journal of Urology : IJU : Journal of the Urological Society of India are provided here courtesy of Medknow Publications