PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of neurotherwww.springer.comThis journalToc AlertsSubmit OnlineOpen Choice
 
Neurotherapeutics. 2010 January; 7(1): 51–61.
PMCID: PMC2818465
NIHMSID: NIHMS158769

Antioxidant therapies for traumatic brain injury

Summary

Free radical-induced oxidative damage reactions, and membrane lipid peroxidation (LP), in particular, are among the best validated secondary injury mechanisms in preclinical traumatic brain injury (TBI) models. In addition to the disruption of the membrane phospholipid architecture, LP results in the formation of cytotoxic aldehyde-containing products that bind to cellular proteins and impair their normal functions. This article reviews the progress of the past three decades in regard to the preclinical discovery and attempted clinical development of antioxidant drugs designed to inhibit free radical-induced LP and its neurotoxic consequences via different mechanisms including the O2 ·− scavenger Superoxide dismutase and the lipid peroxidation inhibitor tirilazad. In addition, various other antioxidant agents that have been shown to have efficacy in preclinical TBI models are briefly presented, such as the LP inhibitors U83836E, resveratrol, curcumin, OPC-14177, and lipoic acid; the iron chelator deferoxamine and the nitroxide-containing antioxidants, such as α-phenyl-tert-butyl nitrone and tempol. A relatively new antioxidant mechanistic strategy for acute TBI is aimed at the scavenging of aldehydic LP byproducts that are highly neurotoxic with “carbonyl scavenging” compounds. Finally, it is proposed that the most effective approach to interrupt posttraumatic oxidative brain damage after TBI might involve the combined treatment with mechanistically complementary antioxidants that simultaneously scavenge LP-initiating free radicals, inhibit LP propagation, and lastly remove neurotoxic LP byproducts.

Key Words: Traumatic brain injury, lipid peroxidation, oxidative damage, antioxidants

References

1. Kontos HA, Povlishock JT. Oxygen radicals in brain injury. Cent Nerv Syst Trauma. 1986;3:257–263. [PubMed]
2. Kontos HA, Wei EP. Superoxide production in experimental brain injury. J Neurosurg. 1986;64:803–807. doi: 10.3171/jns.1986.64.5.0803. [PubMed] [Cross Ref]
3. Halliwell B, Gutteridge JMC. Free Radicals in biology and medicine. 3rd ed. Oxford: Oxford University Press; 2008.
4. Zaleska MM, Floyd RA. Regional lipid peroxidation in rat brain in vitro: possible role of endogenous iron. Neurochem Res. 1985;10:397–410. doi: 10.1007/BF00964608. [PubMed] [Cross Ref]
5. Sadrzadeh SM, Graf E, Panter SS, Hallaway PE, Eaton JW. Hemoglobin. A biologic fenton reagent. J Biol Chem. 1984;259:14354–14356. [PubMed]
6. Sadrzadeh SM, Eaton JW. Hemoglobin-mediated oxidant damage to the central nervous system requires endogenous ascorbate. J Clin Invest. 1988;82:1510–1515. doi: 10.1172/JCI113759. [PMC free article] [PubMed] [Cross Ref]
7. Hall ED, McCall JM, Means ED. Therapeutic potential of the lazaroids (21-aminosteroids) in acute central nervous system trauma, ischemia and subarachnoid hemorrhage. Adv Pharmacol. 1994;28:221–268. doi: 10.1016/S1054-3589(08)60497-4. [PubMed] [Cross Ref]
8. Hall ED, Braughler JM. Free radicals in CNS injury. Res Publ Assoc Res Nerv Ment Dis. 1993;71:81–105. [PubMed]
9. Smith SL, Andrus PK, Zhang JR, Hall ED. Direct measurement of hydroxyl radicals, lipid peroxidation, and blood-brain barrier disruption following unilateral cortical impact head injury in the rat. J Neurotrauma. 1994;11:393–404. doi: 10.1089/neu.1994.11.393. [PubMed] [Cross Ref]
10. Globus MY, Alonso O, Dietrich WD, Busto R, Ginsberg MD. Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. J Neurochem. 1995;65:1704–1711. doi: 10.1046/j.1471-4159.1995.65041704.x. [PubMed] [Cross Ref]
11. Beckman JS. The double-edged role of nitric oxide in brain function and superoxide-mediated injury. J Dev Physiol. 1991;15:53–59. [PubMed]
12. Cobbs CS, Fenoy A, Bredt DS, Noble LJ. Expression of nitric oxide synthase in the cerebral microvasculature after traumatic brain injury in the rat. Brain Res. 1997;751:336–338. doi: 10.1016/S0006-8993(96)01429-1. [PubMed] [Cross Ref]
13. Rao VL, Dogan A, Bowen KK, Dempsey RJ. Traumatic injury to rat brain upregulates neuronal nitric oxide synthase expression and L-[3H]nitroarginine binding. J Neurotrauma. 1999;16:865–877. doi: 10.1089/neu.1999.16.865. [PubMed] [Cross Ref]
14. Gahm C, Holmin S, Mathiesen T. Temporal profiles and cellular sources of three nitric oxide synthase isoforms in the brain after experimental contusion. Neurosurgery. 2000;46:169–177. doi: 10.1097/00006123-200001000-00033. [PubMed] [Cross Ref]
15. Mesenge C, Charriaut-Marlangue C, Verrecchia C, Allix M, Boulu RR, Plotkine M. Reduction of tyrosine nitration after N(omega)-nitro-L-arginine-methylester treatment of mice with traumatic brain injury. Eur J Pharmacol. 1998;353:53–57. doi: 10.1016/S0014-2999(98)00432-4. [PubMed] [Cross Ref]
16. Mesenge C, Verrecchia C, Allix M, Boulu RR, Plotkine M. Reduction of the neurological deficit in mice with traumatic brain injury by nitric oxide synthase inhibitors. J Neurotrauma. 1996;13:209–214. doi: 10.1089/neu.1996.13.11. [PubMed] [Cross Ref]
17. Wada K, Alonso OF, Busto R, et al. Early treatment with a novel inhibitor of lipid peroxidation (LY341122) improves histopathological outcome after moderate fluid percussion brain injury in rats. Neurosurgery. 1999;45:601–608. doi: 10.1097/00006123-199909000-00031. [PubMed] [Cross Ref]
18. Wada K, Chatzipanteli K, Busto R, Dietrich WD. Role of nitric oxide in traumatic brain injury in the rat. J Neurosurg. 1998;89:807–818. doi: 10.3171/jns.1998.89.5.0807. [PubMed] [Cross Ref]
19. Wada K, Chatzipanteli K, Busto R, Dietrich WD. Effects of L-NAME and 7-NI on NOS catalytic activity and behavioral outcome after traumatic brain injury in the rat. J Neurotrauma. 1999;16:203–212. doi: 10.1089/neu.1999.16.203. [PubMed] [Cross Ref]
20. Wallis RA, Panizzon KL, Girard JM. Traumatic neuroprotection with inhibitors of nitric oxide and ADP-ribosylation. Brain Res. 1996;710:169–177. doi: 10.1016/0006-8993(95)01278-8. [PubMed] [Cross Ref]
21. Mesenge C, Margaill I, Verrecchia C, Allix M, Boulu RG, Plotkine M. Protective effect of melatonin in a model of traumatic brain injury in mice. J Pineal Res. 1998;25:41–46. doi: 10.1111/j.1600-079X.1998.tb00384.x. [PubMed] [Cross Ref]
22. Wada K, Chatzipanteli K, Kraydieh S, Busto R, Dietrich WD. Inducible nitric oxide synthase expression after traumatic brain injury and neuroprotection with aminoguanidine treatment in rats. Neurosurgery. 1998;43:1427–1436. doi: 10.1097/00006123-199812000-00096. [PubMed] [Cross Ref]
23. Mesenge C, Verrecchia C, Allix M, Boulu RR, Plotkine M. Reduction of the neurological deficit in mice with traumatic brain injury by nitric oxide synthase inhibitors. J Neurotrauma. 1996;13:11–16. doi: 10.1089/neu.1996.13.11. [PubMed] [Cross Ref]
24. Hummel SG, Fischer AJ, Martin SM, Schafer FQ, Buettner GR. Nitric oxide as a cellular antioxidant: a little goes a long way. Free Radic Biol Med. 2006;40:501–506. doi: 10.1016/j.freeradbiomed.2005.08.047. [PMC free article] [PubMed] [Cross Ref]
25. Kontos HA. Oxygen radicals in CNS damage. Chem Biol Interact. 1989;72:229–255. doi: 10.1016/0009-2797(89)90001-X. [PubMed] [Cross Ref]
26. Hall E. Beneficial effects of acute intravenous ibuprofen with inhibition of thromboxane A2 synthetase or 5-lipoxygenase. CNS Trauma. 1986;2:75–83. [PubMed]
27. Hall E. Beneficial effects of acute intravenous ibuprofen on neurological recovery of head injured mice: Comparison of cyclooxygenase inhibition of thromboxane A2 synthetase or 5-lipoxygenase. CNS Trauma. 1986;2:75–83. [PubMed]
28. Carroll RT, Galatsis P, Borosky S, et al. 4-Hydroxy-2,2,6,6-tetra-methylpiperidine-1-oxyl (Tempol) inhibits peroxynitrite-mediated phenol nitration. Chem Res Toxicol. 2000;13:294–300. doi: 10.1021/tx990159t. [PubMed] [Cross Ref]
29. Hall ED, Andrus PK, Yonkers PA. Brain hydroxyl radical generation in acute experimental head injury. J Neurochem. 1993;60:588–594. doi: 10.1111/j.1471-4159.1993.tb03189.x. [PubMed] [Cross Ref]
30. Marshall LF, Maas AI, Marshall SB, et al. A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J Neurosurg. 1998;89:519–25. doi: 10.3171/jns.1998.89.4.0519. [PubMed] [Cross Ref]
31. Langham J, Goldfrad C, Teasdale G, Shaw D, Rowan K. Calcium channel blockers for acute traumatic brain injury. Cochrane Database Syst Rev 2000:CD000565. [PubMed]
32. Narayan RK, Michel ME, Ansell B, et al. Clinical trials in head injury. J Neurotrauma. 2002;19:503–557. doi: 10.1089/089771502753754037. [PMC free article] [PubMed] [Cross Ref]
33. Maas AI, Murray G, Henney H, et al. Efficacy and safety of dexanabinol in severe traumatic brain injury: results of a phase III randomised, placebo-controlled, clinical trial. Lancet Neurol. 2006;5:38–45. doi: 10.1016/S1474-4422(05)70253-2. [PubMed] [Cross Ref]
34. Muizelaar JP, Kupiec JW, Rapp LA. PEG-SOD after head injury. J Neurosurg. 1995;83:942–942. [PubMed]
35. Du L, Bayir H, Lai Y, et al. Innate gender-based proclivity in response to cytotoxicity and programmed cell death pathway. J Biol Chem. 2004;279:38563–38570. doi: 10.1074/jbc.M405461200. [PubMed] [Cross Ref]
36. Chan PH, Epstein CJ, Li Y, et al. Transgenic mice and knockout mutants in the study of oxidative stress in brain injury. J Neurotrauma. 1995;12:815–824. doi: 10.1089/neu.1995.12.815. [PubMed] [Cross Ref]
37. Mikawa S, Kinouchi H, Kamii H, et al. Attenuation of acute and chronic damage following traumatic brain injury in copper, zinc-superoxide dismutase transgenic mice. J Neurosurg. 1996;85:885–891. doi: 10.3171/jns.1996.85.5.0885. [PubMed] [Cross Ref]
38. Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury. J Neurotrauma. 2000;17:871–890. doi: 10.1089/neu.2000.17.871. [PubMed] [Cross Ref]
39. Xiong Y, Shie FS, Zhang J, Lee CP, Ho YS. Prevention of mitochondrial dysfunction in post-traumatic mouse brain by Superoxide dismutase. J Neurochem. 2005;95:732–744. doi: 10.1111/j.1471-4159.2005.03412.x. [PubMed] [Cross Ref]
40. Gladstone DJ, Black SE, Hakim AM. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke. 2002;33:2123–2136. doi: 10.1161/01.STR.0000025518.34157.51. [PubMed] [Cross Ref]
41. Hall ED, Yonkers PA, McCall JM, Braughler JM. Effects of the 21-aminosteroid U74006F on experimental head injury in mice. J Neurosurg. 1988;68:456–461. doi: 10.3171/jns.1988.68.3.0456. [PubMed] [Cross Ref]
42. McIntosh TK, Thomas M, Smith D, Banbury M. The novel 21-aminosteroid U74006F attenuates cerebral edema and improves survival after brain injury in the rat. J Neurotrauma. 1992;9:33–46. doi: 10.1089/neu.1992.9.33. [PubMed] [Cross Ref]
43. Dimlich RV, Tornheim PA, Kindel RM, Hall ED, Braughler JM, McCall JM. Effects of a 21-aminosteroid (U-74006F) on cerebral metabolites and edema after severe experimental head trauma. Adv Neurol. 1990;52:365–375. [PubMed]
44. Hall ED, Yonkers PA, Andrus PK, Cox JW, Anderson DK. Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J Neurotrauma. 1992;9(suppl 2):S425–S442. [PubMed]
45. Lyons WE, George EB, Dawson TM, Steiner JP, Snyder SH. Immunosuppressant FK506 promotes neurite outgrowth in cultures of PC12 cells and sensory ganglia. Proc Natl Acad Sci U S A. 1994;91:3191–3195. doi: 10.1073/pnas.91.8.3191. [PubMed] [Cross Ref]
46. Kassell NF, Haley EC, Apperson-Hansen C, Alves WM. Randomized, double-blind, vehicle-controlled trial of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage: a cooperative study in Europe, Australia, and New Zealand. J Neurosurg. 1996;84:221–228. doi: 10.3171/jns.1996.84.2.0221. [PubMed] [Cross Ref]
47. Lanzino G, Kassell NF. Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage. Part II. A cooperative study in North America. J Neurosurg. 1999;90:1018–1024. doi: 10.3171/jns.1999.90.6.1018. [PubMed] [Cross Ref]
48. Hall ED. The mouse head injury model: utility in the discovery of acute cerebroprotective agents. In: Stoo T, editor. Central nervous system trauma research techniques. Boca Raton, FL: CRC Press; 1995. pp. 213–233.
49. Hall ED, Andrus PK, Smith SL, et al. Neuroprotective efficacy of microvascularly-localized versus brain-penetraiting antioxidants. Acta Neurochir Suppl. 1995;66:107–113. [PubMed]
50. Mori T, Kawamata T, Katayama Y, et al. Antioxidant, OPC-14117, attenuates edema formation, and subsequent tissue damage following cortical contusion in rats. Acta Neurochir Suppl (Wien) 1998;71:120–122. [PubMed]
51. Sharma S, Zhuang Y, Ying Z, Wu A, Gomez-Pinilla F. Dietary curcumin supplementation counteracts reduction in levels of molecules involved in energy homeostasis after brain trauma. Neuroscience. 2009;161:1037–1044. doi: 10.1016/j.neuroscience.2009.04.042. [PMC free article] [PubMed] [Cross Ref]
52. Wu A, Ying Z, Gomez-Pinilla F. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp Neurol. 2006;197:309–317. doi: 10.1016/j.expneurol.2005.09.004. [PubMed] [Cross Ref]
53. Ates O, Cayli S, Altinoz E, et al. Neuroprotection by resveratrol against traumatic brain injury in rats. Mol Cell Biochem. 2007;294:137–144. doi: 10.1007/s11010-006-9253-0. [PubMed] [Cross Ref]
54. Sonmez U, Sonmez A, Erbil G, Tekmen I, Baykara B. Neuroprotective effects of resveratrol against traumatic brain injury in immature rats. Neurosci Lett. 2007;420:133–137. doi: 10.1016/j.neulet.2007.04.070. [PubMed] [Cross Ref]
55. Beni SM, Kohen R, Reiter RJ, Tan DX, Shohami E. Melatonin-induced neuroprotection after closed head injury is associated with increased brain antioxidants and attenuated late-phase activation of NF-kappaB and AP-1. FASEB J. 2004;18:149–151. [PubMed]
56. Cirak B, Rousan N, Kocak A, Palaoglu O, Palaoglu S, Kilic K. Melatonin as a free radical scavenger in experimental head trauma. Pediatr Neurosurg. 1999;31:298–301. doi: 10.1159/000028879. [PubMed] [Cross Ref]
57. Ozdemir D, Tugyan K, Uysal N, et al. Protective effect of melatonin against head trauma-induced hippocampal damage and spatial memory deficits in immature rats. Neurosci Lett. 2005;385:234–239. doi: 10.1016/j.neulet.2005.05.055. [PubMed] [Cross Ref]
58. Ozdemir D, Uysal N, Gonenc S, et al. Effect of melatonin on brain oxidative damage induced by traumatic brain injury in immature rats. Physiol Res. 2005;54:631–637. [PubMed]
59. Toklu HZ, Hakan T, Biber N, Solakoglu S, Ogunc AV, Sener G. The protective effect of alpha lipoic acid against traumatic brain injury in rats. Free Radic Res. 2009;43:658–667. doi: 10.1080/10715760902988843. [PubMed] [Cross Ref]
60. Longoni B, Salgo MG, Pryor WA, Marchiafava PL. Effects of melatonin on lipid peroxidation induced by oxygen radicals. Life Sci. 1998;62:853–859. doi: 10.1016/S0024-3205(98)00002-2. [PubMed] [Cross Ref]
61. Zhang H, Squadrito GL, Pryor WA. The reaction of melatonin with peroxynitrite: formation of melatonin radical cation and absence of stable nitrated products. Biochem Biophys Res Commun. 1998;251:83–87. doi: 10.1006/bbrc.1998.9426. [PubMed] [Cross Ref]
62. Zhang H, Squadrito GL, Uppu R, Pryor WA. Reaction of peroxynitrite with melatonin: A mechanistic study. Chem Res Toxicol. 1999;12:526–534. doi: 10.1021/tx980243t. [PubMed] [Cross Ref]
63. Hall ED, Braughler JM, Yonkers PA, et al. U-78517F: a potent inhibitor of lipid peroxidation with activity in experimental brain injury and ischemia. J Pharmacol Exp Ther. 1991;258:688–694. [PubMed]
64. Mustafa AG, Singh IN, Carrico KM, Hall ED. Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals. J Neurotrauma. 2009;26:A93–A93. [PMC free article] [PubMed]
65. Awasthi D, Church DF, Torbati D, Carey ME, Pryor WA. Oxidative stress following traumatic brain injury in rats. Surg Neurol. 1997;47:575–582. doi: 10.1016/S0090-3019(96)00461-2. [PubMed] [Cross Ref]
66. Marklund N, Clausen F, Lewen A, Hovda DA, Olsson Y, Hillered L. alpha-Phenyl-tert-N-butyl nitrone (PBN) improves functional and morphological outcome after cortical contusion injury in the rat. Acta Neurochir (Wien) 2001;143:73–81. doi: 10.1007/s007010170141. [PubMed] [Cross Ref]
67. Bonini MG, Mason RP, Augusto O. The mechanism by which 4-hydroxy-2,2,6,6-tetramethylpiperidene-1-oxyl (tempol) diverts peroxynitrite decomposition from nitrating to nitrosating species. Chem Res Toxicol. 2002;15:506–11. doi: 10.1021/tx015571z. [PubMed] [Cross Ref]
68. Deng-Bryant Y, Singh IN, Carrico KM, Hall ED. Neuroprotective effects of tempol, a catalytic scavenger of peroxynitrite-derived free radicals, in a mouse traumatic brain injury model. J Cereb Blood Flow Metab. 2008;28:1114–1126. doi: 10.1038/jcbfm.2008.10. [PubMed] [Cross Ref]
69. Zhang R, Shohami E, Beit-Yannai E, Bass R, Trembovler V, Samuni A. Mechanism of brain protection by nitroxide radicals in experimental model of closed-head injury. Free Radie Biol Med. 1998;24:32–40. [PubMed]
70. Beit-Yannai E, Zhang R, Trembovler V, Samuni A, Shohami E. Cerebroprotective effect of stable nitroxide radicals in closed head injury in the rat. Brain Res. 1996;717:22–8. doi: 10.1016/0006-8993(95)01492-6. [PubMed] [Cross Ref]
71. Long DA, Ghosh K, Moore AN, Dixon CE, Dash PK. Deferoxamine improves spatial memory performance following experimental brain injury in rats. Brain Res. 1996;717:109–117. doi: 10.1016/0006-8993(95)01500-0. [PubMed] [Cross Ref]
72. Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G. Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke. 2009;40:2241–2243. doi: 10.1161/STROKEAHA.108.539536. [PMC free article] [PubMed] [Cross Ref]
73. Panter SS, Braughler JM, Hall ED. Dextran-coupled deferoxamine improves outcome in a murine model of head injury. J Neurotrauma. 1992;9:47–53. doi: 10.1089/neu.1992.9.47. [PubMed] [Cross Ref]
74. Althaus JS, Oien TT, Fici GJ, Scheich HM, Sethy VH, Von Voigtlander PF. Structure activity relationships of peroxynitrite scavengers an approach to nitric oxide neurotoxicity. Res Commun Chem Pathol Pharmacol. 1994;83:243–254. [PubMed]
75. Singh IN, Sullivan PG, Hall ED. Peroxynitrite-mediated oxidative damage to brain mitochondria: protective effects of peroxynitrite scavengers. J Neurosci Res. 2007;85:2216–2223. doi: 10.1002/jnr.21360. [PubMed] [Cross Ref]
76. Hall ED, Kupina NC, Althaus JS. Peroxynitrite scavengers for the acute treatment of traumatic brain injury. Ann N Y Acad Sci. 1999;890:462–468. doi: 10.1111/j.1749-6632.1999.tb08025.x. [PubMed] [Cross Ref]
77. Galvani S, Coatrieux C, Elbaz M, et al. Carbonyl scavenger and antiatherogenic effects of hydrazine derivatives. Free Radie Biol Med. 2008;45:1457–1467. doi: 10.1016/j.freeradbiomed.2008.08.026. [PubMed] [Cross Ref]
78. Hamann K, Nehrt G, Ouyang H, Duerstock B, Shi R. Hydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord. J Neurochem. 2008;104:708–718. [PubMed]

Articles from Neurotherapeutics are provided here courtesy of Springer