Search tips
Search criteria 


Logo of iaiPermissionsJournals.ASM.orgJournalIAI ArticleJournal InfoAuthorsReviewers
Infect Immun. 1993 November; 61(11): 4689–4695.
PMCID: PMC281222

Inhibition of glucosyltransferase activities of Streptococcus mutans by a monoclonal antibody to a subsequence peptide.


Preliminary analysis indicated that a 19-amino-acid peptide sequence (435 to 453 of GtfC) within a highly conserved region of the glucosyltransferases of the cariogenic streptococci might be functionally important (J.-S. Chia, S.-W. Lin, T.-Y. Hsu, J.-Y. Chen, H.-W. Kwan, and C.-S. Yang, Infect. Immun. 61:1563-1566, 1993). To obtain antipeptide monoclonal antibodies (MAbs), the 19-amino-acid peptide was conjugated to bovine serum albumin and used as an antigen in BALB/c mice. Six immunoglobulin G-secreting hybridoma clones, CJSm18-S1 to -S6, specifically reacted with this peptide and with purified GtfC and GtfD but not with bovine serum albumin in an enzyme-linked immunosorbent assay. The concentrated hybridoma supernatant of all six MAbs inhibited GtfC enzymatic activity but failed to inhibit GtfD, although GtfD contains the same peptide sequence. Further analysis of a purified immunoglobulin G2b MAb from one of the clones, CJSm18-S3, confirmed that this MAb specifically inhibited GtfC enzymatic activity for insoluble-glucan synthesis in a dose-dependent manner. CJSm18-S3, even at high concentrations, had no effect on GtfD, which synthesizes water-soluble glucan exclusively. Furthermore, the in vitro sucrose-dependent adherence of Streptococcus mutans was also inhibited by CJSm18-S3 in a dose-dependent manner. Our results indicate that the peptide containing the N-terminal conserved region of glucosyltransferases is functionally important for both enzymatic activity and bacterial adherence.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.5M), or click on a page image below to browse page by page.

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)