Search tips
Search criteria 


Logo of biometLink to Publisher's site
Biometrika. 2009 September; 96(3): 723–734.
Published online 2009 August 7. doi:  10.1093/biomet/asp033
PMCID: PMC2798744

Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data


Considerable recent interest has focused on doubly robust estimators for a population mean response in the presence of incomplete data, which involve models for both the propensity score and the regression of outcome on covariates. The usual doubly robust estimator may yield severely biased inferences if neither of these models is correctly specified and can exhibit nonnegligible bias if the estimated propensity score is close to zero for some observations. We propose alternative doubly robust estimators that achieve comparable or improved performance relative to existing methods, even with some estimated propensity scores close to zero.

Some key words: Causal inference, Enhanced propensity score model, Missing at random, No unmeasured confounders, Outcome regression


  • Bang H., Robins J. M. Doubly robust estimation in missing data and causal inference models. Biometrics. 2005;61:962–72. [PubMed]
  • Kang D. Y. J., Schafer J. L. Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data (with discussion and rejoinder) Statist. Sci. 2007;22:523–80. [PMC free article] [PubMed]
  • Lunceford J. K., Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statist. Med. 2004;23:2937–60. [PubMed]
  • Robins J. M., Hernán M., Brumback B. Marginal structural models and causal inference in epidemiology. Epidemio. 2000;11:550–60. [PubMed]
  • Robins J. M., Rotnitzky A., Zhao L. P. Estimation of regression coefficients when some regressors are not always observed. J. Am. Statist. Assoc. 1994;89:846–66.
  • Robins J. M., Sued M., Lei-Gomez Q., Rotnitzky A. Performance of double-robust estimators when inverse probability weights are highly variable. Statist. Sci. 2007;22:544–59.
  • Rosenbaum P. R. Model-based direct adjustment. J. Am. Statist. Assoc. 1987;82:387–94.
  • Rosenbaum P. R., Rubin D. B. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70:41–55.
  • Rosenbaum P. R., Rubin D. B. Reducing bias in observational studies using subclassification on the propensity score. J. Am. Statist. Assoc. 1984;79:516–24.
  • Rubin D. B. Inference and missing data. Biometrika. 1976;63:581–92.
  • Rubin D. B. Bayesian inference for causal effects: the role of randomization. Ann. Statist. 1978;6:34–58.
  • Rubin D. B., Thomas N. Matching using estimated propensity scores: relating theory to practice. Biometrics. 1996;52:249–64. [PubMed]
  • SAS Institute Inc. SAS Online Documentation 9.1.3. Cary, NC: SAS Institute; 2006.
  • Stefanski L. A., Boos D. D. The calculus of M-estimation. Am. Statist. 2002;56:29–38.
  • Scharfstein D. O., Rotnitzky A., Robins J. M. Adjusting for nonignorable drop-out using semiparametric nonresponse models (with discussion and rejoinder) J. Am. Statist. Assoc. 1999;94:1096–146.
  • Tan Z. A distributional approach for causal inference using propensity scores. J. Am. Statist. Assoc. 2006;101:1619–37.
  • Tan Z. Understanding OR, PS and DR. Statist. Sci. 2007;22:560–8.
  • Tsiatis A. A. Semiparametric Theory and Missing Data. New York: Springer; 2006.
  • Tsiatis A. A., Davidian M. Comment on `Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data. Statist. Sci. 2007;22:569–73. [PMC free article] [PubMed]

Articles from Biometrika are provided here courtesy of Oxford University Press