PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of nihpaAbout Author manuscriptsSubmit a manuscriptHHS Public Access; Author Manuscript; Accepted for publication in peer reviewed journal;
 
Brain Res Rev. Author manuscript; available in PMC 2010 December 11.
Published in final edited form as:
PMCID: PMC2787800
NIHMSID: NIHMS149625

A combined histological and MRI brain atlas of the common marmoset monkey, Callithrix jacchus

Abstract

The common marmoset, Callithrix jacchus, is of growing importance for research in neuroscience and related fields. In the present work, we describe a combined histological and magnetic resonance imaging (MRI) atlas constructed from the brains of two adult female marmosets. Histological sections were processed from Nissl staining and digitized to produce an atlas in a large format that facilitates visualization of structures with significant detail. Naming of identifiable brain structures was performed utilizing current terminology. The histological sections and a simplified schematic atlas are available online at http://udn.nichd.nih.gov/brainatlas_home.html.

Keywords: primate neuroanatomy, Callitrichidae, female, forebrain, thalamus, midbrain, brainstem, magnetic resonance imaging

1. Introduction

The common marmoset, Callithrix jacchus, is of growing importance for research in neuroscience and related fields, including pharmacology, ethology, genetics, endocrinology, and reproductive biology. Their relatively small body size (adults range from 14 to 18 cm and weigh 250–500 g), and social organization in small family groups lend themselves to being kept in manageable captive housing facilities. Their lissencephalic brain is smaller than that of the rhesus macaque (Figure 1), making brain preparation and experimentation less cumbersome than with larger primate brains. Yet, their brains share a number of anatomical features found in other primates, with a well-defined lateral fissure, temporal lobes, and internal structures that are very similar to that of other primates, including humans.

Figure 1
Adult marmoset brain, with mm ruler for size reference

For readers less familiar with the marmoset and research based on this primate, we offer the following section as an overview. Marmosets and tamarins (family Callitrichidae) are small New World primates. Most live in small family groups, in which the father and older offspring play a major role in caring for the infants, which are typically born as twins. Marmosets have high reproductive capacity, reaching breeding age at around 18 months, and females can produce two litters per year. The common marmoset, Callithrix jacchus, is probably the best known, and the most widely used in research, spanning a wide range of fields. These include behavioral pharmacology (e.g., Cagni, et al., 2009), reproductive physiology (e.g., Haig, 1999; Saltzman and Abbott, 2009), genetics (e.g., Datson, et al., 2007; Raveendran, et al., 2008), transgenics (e.g., Sasaki, et al., 2009; Schatten and Mitalipov, 2009), comparative psychology (e.g., Hook and Rogers, 2008), and social behavior (e.g., Barbosa, et al., 2009; Clara, et al., 2008 ; Zahed, et al., 2008).

Notably, a draft sequence of the marmoset genome has recently been released (http://www.hgsc.bcm.tmc.edu/project-species-p-Marmoset.hgsc?pageLocation=Marmoset). Perhaps of greatest relevance to the marmoset brain atlas we are presenting here, there is an extensive literature on the use of common marmosets in neuroscience research. Some examples of this rich literature include chemoarchitecture of calcium-binding proteins (Bourne, et al., 2007), architecture of frontal cortex (Burman, et al., 2009), sex differences in brain anatomy (Reinius, et al., 2008), auditory physiology (Wang, 2007; Wang, et al., 2008), cortical neurotransmitters (Walker, et al., 2009), parietal cortex anatomy and physiology (Qi, et al., 2002; Burish, et al., 2008), visual cortex anatomy (Rosa, et al., 2009), early developmental manipulations and gene expression in the brain (Law, et al., 2009; Pryce, 2008), and marmosets as models for studying human neuromuscular and autoimmune diseases (Eslamboli, 2005; Hohjoh, et al., 2009; ‘t Hart and Massacesi, 2009).

Several neuroanatomical overviews of the marmoset brain have been published (Osman Hill, 1957; Hershkovitz, 1977; Prado-Reis and Erhart, 1979a,b; Saavedra and Mazzuchelli, 1969). Descriptions of marmoset cerebral cortex have also been published (Brodmann, 1909; Peden and von Bonin, 1947). Until very recently, only one comprehensive brain atlas had been published, and is now out of print and difficult to obtain (Stephan, Baron, and Schwerdtfeger, 1980). In 2008, a new stereotaxic atlas became available (Palazzi and Bordier, 2008). This atlas presents brain sections stained for acetylcholine esterase (AChE). Although the plates in the printed atlas are quite small to show much detail, the accompanying Compact Disc permits enlarging the figures in considerable detail. AChE staining leaves out much of the cellular detail that permits a researcher to reliably identifying a structure under the microscope, and distinguishing cellular masses (nuclei) with the clarity that Nissl material permits. Most recently, motivated by the creation of a public internet database for histological brain sections (http://brainmaps.org, Miluka, et al., 2007), Tokuno, et al. (2009) constructed a database of histological sections of the marmoset brain that were converted to digital images and which are available online (http://marmoset-brain.org:2008).

Magnetic resonance imaging (MRI) has established itself as the most widely used modality for imaging the whole brain in vivo. MRI excels in neuroimaging because of its intrinsic soft-tissue contrast, high resolution, and ability to follow in vivo processes longitudinally. The marmoset has been increasingly studied with MRI (Figure 2). However, to date, there are no studies relating the soft tissue contrast obtained with MRI with the cytoarchitectonic information provided by histology. The goal of the present work is to present a combined histological and MRI-based atlas of the marmoset brain that may serve as a reference for studies in contemporary neuroscience research, including electrophysiology, gene expression studies (e.g., through the use of immunocytochemistry) and functional magnetic resonance imaging. We also concluded, through our own experience and careful reading of existing stereotaxic atlases, that distortions created by histological preparation and inter-brain variability in the dimensions and spatial location of internal brain structures made reliance on the positional information found in a stereotaxic atlas problematic. Our goal here is to present an atlas with good quality histology, in a large format that facilitates visualizing detailed structure, and using terminology that reflects current conventions.

Figure 2
Cumulative number of MRI studies of marmosets

2. Results

The complete set of Nissl images upon which the atlas is based may be found at http://udn.nichd.nih.gov/brainatlas_home.html. For the present atlas, each Nissl image was cropped to present only one hemisphere, and structures were labeled with Adobe Photoshop Elements 2.0. Each plate is identified by an ‘A’ or ‘P’ number to designate anterior or posterior coordinates respectively, as one would expect to find in a stereotaxic atlas. These designations are meant only as plate identifiers, and not as accurate stereotaxic levels. Structures were identified by reference to existing atlases, in particular, the marmoset atlas by Stephan, et al. (1980). However, their use of different nomenclature, together with several cell clusters in our female’s brain that appeared to have no equivalent in the male brain as used in the atlas by Stephan, et al., made identification of a number of structures problematic. We took a conservative approach, and wherever doubt existed about the identity of a particular cell cluster, no identification was made.

The brain atlas is presented both as a series of Nissl histology plates (Figures 3–31), and a series of MRI images (Figures 32–60) matched as closely as possible to the Nissl plates. Each Nissl plate shows a 40 micron-thick section. The distance between sections is 480 microns. The MRI images are 66 micron-thick. To improve the signal-to-noise ratio of the MRI while preserving gray-to-white matter contrast, the fixed brain was soaked for one week in a 10% formalin solution doped with 5 mM gadopentetate dimeglumine (see Experimental Procedure below). This MRI contrast agent reduces both T1 and T2 relaxation time constants of the fixed tissue, allowing the MRI to be acquired in a shorter period of time. A T2-weighted sequence was chosen to enhance the MRI contrast between gray and white matter under the conditions of a shorter repetition time, and excellent contrast between gray and white matter structures were obtained. While similar contrast could have been obtained using a T1-weighted sequence, as it is commonly used for in vivo MRI, a much longer acquisition time would have been necessary. Even though the contrast in the MRI images was different than the contrast in either the corresponding Weil or Nissl histological plates, the spatial resolution of 66 microns was sufficient to allow clear delineation of all areas identified in the histological sections. The images of the sections have been cropped to highlight the detailed histology of deep brain structures. While this excludes the cortex, cortical maps now tend to be made on a variety of evidence from anatomical, neurochemical, and functional studies, rather than from histology alone (Rosa and Tweedale, 2005). Examination of the histology underlying the atlas indicates that the basic neuroanatomical organization described in earlier publications of the marmoset brain is present in our atlas brain. The Nissl images used for the atlas are also available online (http://udn.nichd.nih.gov), showing the complete section in each instance, along with matching Weil-stained sections for myelinated fibers. Eventually, the MR images, along with higher-resolution Nissl and Weil images, will be available online.

Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31Figures 3 31
Nissl atlas (A 12.0-P 2.0)
Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60Figures 32 60
MRI atlas (A 12.0-P 2.0)

3. Discussion

While there is, at present, no detailed description of internal differences in the brains of male and female marmosets, most primate brain atlases employ the brain of a male of the species. Given that the female brain is at least as interesting from a research standpoint as the male brain, we chose to use the brain of a female for our atlas. We chose not to produce a stereotaxic atlas for several reasons. In our experience, the coordinates presented in atlases, at least for the marmoset and the squirrel monkey, with which we have extensive experience, are not very accurate. This may be because of variability in the location and shape of brain structures across different individual monkeys, or because of spatial distortions introduced during fixation, histological sectioning and staining. As Gergen and MacLean (1962, p. 5) state in their squirrel monkey atlas, ‘…one would have a 50% chance of coming within 0.5 mm of a point described in the present atlas.’ This is not to say that the use of the stereotaxic frame and an atlas developed for stereotaxic research doesn’t have continuing value in neuroscience research. Rather, our focus has been to provide a reference tool useful for those doing immunocytochemical and other types of anatomical studies for which stereotaxic coordinates are of little value. The authors agree with the statement by C. N. Woolsey that an atlas based on the actual brain histology is preferable to line drawings, ‘…since line drawings necessarily force one to make arbitrary decisions concerning boundaries between structures when, without experimental verification, the boundaries may be uncertain or, in fact, not at all sharply definable’ (p. vi, in Emmers and Akert, 1963).

Some nuclei identified in Stephan, et al (1980) were not clearly identified in our brain sections, and, as consequence, fewer structures in our atlas are identified. It is unclear whether this is due to the fact that we used a female brain whereas the earlier atlas used a male brain, or, more likely, to the possibility that we were more conservative in labeling only structures that were clearly delineated in our histological material. Our use of English equivalents for nomenclature is a departure from most of the older brain atlases, although English terminology is used in more recent atlases (e.g., Paxinos, et al., 2000). The history of anatomical nomenclature suggests that attempts to standardize the naming of anatomical structures using Latin terms, as laid out in the BNA (Basle Anatomical Nomenclature, e.g., Jamieson, 1916), has not been without controversy. The original list of terms was derived from human anatomical treatises, so it is not surprising that attempts to transfer these terms to the brain anatomy of other species will not meet universal acceptance. We chose the English terms used for the rhesus macaque brain illustrated at the http://brainmaps.org website because of the agreement in internal positioning of what appear to be the equivalent structures in the marmoset brain used in our atlas (Table 1).

Table 1
List of Abbreviations

4. Experimental Procedure

Subjects

Experiments were performed in two adult female common marmosets, two years in age, 500 g body weight, from our breeding colony. All procedures followed the guidelines of the NIH Animal Care and Use Committee.

Histology

One of the female marmosets was deeply anesthetized with sodium pentobarbital (100mg/kg) and perfused through the heart with PBS followed by 10% formalin. The brain was then sent to Neuroscience Associates of Knoxville, TN, who prepared it for histological analysis. The brain was cut in the coronal (frontal) plane at 40 microns, every sixth section stained for Nissl granules with thionine and the adjacent section stained for myelinated fibers with the Weil technique. Only Nissl-stained sections are used in the present atlas. The actual distance between the Nissl-stained sections was 240 microns. We selected every other section to produce an atlas with sections spaced every 480 microns. The mounted sections were photographed at the NIH (Medical Arts and Photography Branch). The equipment used was a Nikon Multiphot optical bench with Zeiss Luminar 100 mm lens, and scanned with a Better Light 6100 scan back driven by Better Light Viewfinder 5.3 software. The final images were saved as arrays of 6000×8000 pixels in Adobe Photoshop 6.0. Some additional re-touching (brightness and contrast) was done with Adobe Photoshop Elements 2.0.

Magnetic Resonance Imaging

MRI images were made in the fixed brain of another female marmoset. The marmoset was sacrificed under deep anesthesia (sodium pentobarbital, 100 mg/kg, iv) via perfusion fixation through the ascending aorta with 500 mL of ice-cold 4.0% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). The brain was removed and further fixed by immersion in the paraformaldehyde solution for 2 hours at 4°C. It was then stored in 10% neutral buffered formalin doped with 5 mM gadopentetate dimeglumine (Magnevist, Berlex Laboratories, Wayne, NJ, USA) contrast agent for one week. MRI was performed on a 7T/30 cm USR/AVIII MRI scanner (Bruker-Biospin, Inc., Ettlingen, Germany) equipped with a 15 cm gradient set capable of 450 mT/m strength (Resonance Research, Inc., Billerica, MA, USA). The brain was imaged in a 3.5 cm inner diameter transmit/receive birdcage coil (Bruker-Biospin) with a T2-weighted, 3D multi spin-echo sequence (TE = 13, Number of Echoes = 2, TR = 350 ms, FOV = 34 mm × 26 mm × 22 mm, Matrix = 512 × 395 × 335) in about 13 hours. The displayed coronal sections from this data set are 66 μm thick with an in-plane resolution of 66 μm.

Nomenclature

The nomenclature and abbreviations used in our atlas have come, almost exclusively, from brainmaps.org (http://brainmaps.org/index.php?action=viewslides&datid=1) (Table 1). The coronal sections of a male rhesus macaque posted there meet the criteria of good quality histology, and identification of sufficient structures to be useful.

Acknowledgments

The authors wish to thank Ms. Julie Mackel and Ms. Deborah Bernhards for technical assistance. This research was supported by the Intramural Research Program of the NIH, NICHD and NINDS.

Footnotes

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

References

  • Barbosa MN, da Silva Mota MT. Behavioral and hormonal response of common marmosets, Callithrix jacchus, to two environmental conditions. Primates. 2009;50:253–260. [PubMed]
  • Bourne JA, Warner CE, Upton DJ, Rosa MGP. Chemoarchitecture of the middle temporal visual area in the marmoset monkey (Callithrix jacchus): laminar distribution of calcium-binding proteins (calbindin, parvalbumin) and nonphosphorylated neurofilament. J Comp Neurol. 2007;500:832–849. [PubMed]
  • Brodmann K. In: Brodmann’s Localisation in the Cerebral Cortex. 2006. Garey LJ, translator. Springer; New York: 1909.
  • Burish MJ, Stepniewska I, Kaas JH. Microstimulation and architectonics of frontoparietal cortex in common marmosets (Callithrix jacchus) J Comp Neurol. 2008;507:1151–1168. [PubMed]
  • Burman KJ, Rosa MGP. Architectural subdivisions of medial and orbital frontal cortices in the marmoset monkey (Callithrix jacchus) J Comp Neurol. 2009;514:11–29. [PubMed]
  • Cagni P, Goncalves I, Jr, Ziller F, Emile N, Barros M. Humans and natural predators induce different fear/anxiety reactions and pattern to diazepam in marmoset monkeys. Pharmacol Biochem Behav. 2009;93:134–140. [PubMed]
  • Clara E, Tommasi L, Rogers LJ. Social mobbing calls in common marmosets (Callithrix jacchus): effects of experience and associated cortisol levels. Anim Cogn. 2008;11:349–358. [PubMed]
  • Datson NA, Morsink MC, Atanasova S, Armstrong VW, Zischler H, Schlumbohm C, Dutilh BE, Huynen MA, Waegele B, Ruepp A, de Kloet ER, Fuchs E. Development of the first marmoset-specific DNA microarray (EUMAMA): a new genetic tool for large-scale expression profiling in a non-human primate. BMC Genomics. 2007;8:190. [PMC free article] [PubMed]
  • Emmers R, Akert K. A stereotaxic atlas of the brain of the squirrel monkey (Saimiri sciureus) The University of Wisconsin Press; Madison: 1963.
  • Eslamboli A. Marmoset monkey models of Parkinson’s disease: which model, when and why? Brain Res Bull. 2005;68:140–149. [PubMed]
  • Gergen JA, MacLean PD. A Stereotaxic Atlas of the Squirrel Monkey’s Brain (Saimiri sciureus) U.S. Department of Health, Education and Welfare, National Institutes of Health; Bethesda, Maryland: 1962. Public Health Service Publication. No. 933.
  • Haig D. What is a marmoset? Amer JPrimatol. 1999;49:285–296. [PubMed]
  • Hershkovitz P. Living New World Primates (Platyrrhini) Vol. 1. University of Chicago Press; Chicago: 1977.
  • Hohjoh H, Akari H, Fujiwara Y, Tamura Y, Hirai H, Wada K. Molecular cloning and characterization of the common marmoset huntingtin gene. Gene. 2009;432:60–66. [PubMed]
  • Hook MA, Rogers LJ. Visuospatial reaching preferences of common marmosets (Callithrix jacchus): an assessment of individual biases across a variety of tasks. J Comp Psychol. 2008;122:41–51. [PubMed]
  • Jamieson EB. The Basle Anatomical Nomenclature (BNA) W. Green and Son; London: 1916.
  • Law AJ, Pei Q, Feldon J, Pryce CR, Harrison PJ. Gene expression in the anterior cingulate cortex and amygdala of adolescent marmoset monkeys following parental separations in infancy. Intern J Neuropsychopharmacology. 2009;12:761–772. [PMC free article] [PubMed]
  • Osman Hill WC. Primates, Comparative Anatomy and Taxonomy III. Pithecoidea, Platyrrhini. Edinburgh University Press, Edinburgh University Publications, Science and Mathematics no. 3C; Edinburgh: 1957.
  • Palazzi X, Bordier N. The Marmoset Brain in Stereotaxic Coordinates. Springer Science + Business Media LLC; New York: 2008.
  • Paxinos G, Huang X-F, Toga AW. The Rhesus Monkey Brain in Stereotaxic Coordinates. Academic Press; San Diego: 2000.
  • Peden JK, von Bonin G. The neocortex of Hapale. J Comp Neurol. 1947;86:37–63. [PubMed]
  • Prado-Reis F, Erhart EA. The brain of the marmoset (Callithrix jacchus) Acta Anat (Basel) 1979a;103:350–357. [PubMed]
  • Prado Reis F, Erhart EA. Brain stem, cerebellum and diencephalon of the marmoset (Callithrix jacchus) Acta anat. 1979b;103:278–291. [PubMed]
  • Pryce CR. Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. Brain Res Rev. 2008;57:596–605. [PubMed]
  • Qi H-X, Lyon DC, Kaas JH. Cortical and thalamic connections of the parietal and ventral somatosensory area in marmoset monkeys (Callithrix jacchus) J Comp Neurol. 2002;443:168–182. [PubMed]
  • Raveendran M, Tardif S, Ross CN, Austad SN, Harris RA, Milosavijevic A, Rogers J. Polymorphic microsatellite loci for the common marmoset (Callithrix jacchus) designed using a cost- and time-efficient method. Amer J Primatol. 2008;70:906–910. [PMC free article] [PubMed]
  • Rosa MGP, Palmer SM, Gamberini M, Burman KJ, Yu H-H, Reser DH, Bourne JA, Tweedale R, Galletti C. Connections of the dorsomedial visual area: pathways for early integration of dorsal and ventral streams in extrastriate cortex. J Neurosci. 2009;29:4548–4563. [PubMed]
  • Reinius B, Saetre P, Leonard JA, Blekhman R, Merino-Martinez R, Gilad Y, Jazin E. An evolutionarily conserved sexual signature in the primate brain. PLoS Genetics. 2008;4:1–13. [PMC free article] [PubMed]
  • Rosa MG, Tweedale R. Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Phil Trans Roy Soc B. 2005;360:665–691. [PMC free article] [PubMed]
  • Saavedra JP, Mazzuchelli AL. A stereotaxic atlas of the brain of the marmoset (Hapale jacchus) J Hirnforsch. 1969;11:105–122. [PubMed]
  • Saltzman W, Abbott DH. Effects of elevated circulating cortisol concentration on maternal behavior in common marmoset (Callithrix jacchus) Psychoneuroendocrinology. 2009;34:1222–1234. [PMC free article] [PubMed]
  • Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R, Kamioka M, Tomioka I, Sotomaru Y, Hirakawa R, Eto T, Shiozawa S, Maeda T, Ito M, Kito C, Yagihashi C, Kawai K, Miyoshi H, Tanioka Y, Tamaoki N, Habu S, Okano H, Nomura T. Generation of transgenic non-human primates with germline transmission. Nature. 2009;459:523–528. [PubMed]
  • Schatten G, Mitalipov S. Transgenic primate offspring. Nature. 2009;459:515–516. [PMC free article] [PubMed]
  • Stephan H, Baron G, Schwerdtfeger WK. A Stereotaxic Atlas. Springer-Verlag; Berlin: 1980. The Brain of the Common Marmoset (Callithrix jacchus)
  • ‘t Hart BA, Massacesi L. Clinical, pathological, and immunologic aspects of the multiple sclerosis model in common marmosets (Callithrix jacchus) J Neuropathol Exp Neurol. 2009;68:341–355. [PubMed]
  • Tokuno H, Tanaka I, Umitsu Y, Akazawa T, Nakamura I. Web-accessible digital brain atlas of the common marmoset (Callithrix jacchus) Neurosci Res. 2009;64:128–131. [PubMed]
  • Walker SC, Robbins TW, Roberts AC. Differential contributions of dopamine and serotonin to orbitofrontal cortex function in the marmoset. Cerebral Cortex. 2009;19:889–898. [PMC free article] [PubMed]
  • Wang X. Neural coding strategies in auditory cortex. Hearing Res. 2007;229:81–93. [PubMed]
  • Wang X, Lu T, Bendor D, Bartlett E. Neural coding of temporal information in auditory thalamus and cortex. Neuroscience. 2008;157:484–493. [PubMed]
  • Zahed SR, Prudom SL, Snowdon CT, Ziegler TE. Male parenting and response to infant stimuli in the common marmoset (Callithrix jacchus) Amer J Primatol. 2008;70:84–92. [PubMed]