PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of nihpaAbout Author manuscriptsSubmit a manuscriptHHS Public Access; Author Manuscript; Accepted for publication in peer reviewed journal;
 
Lab Invest. Author manuscript; available in PMC 2010 June 1.
Published in final edited form as:
PMCID: PMC2787798
NIHMSID: NIHMS129305

Cardiac Hypertrophy in Mice with Long-Chain Acyl-CoA Dehydrogenase (LCAD) or Very Long-Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency

Abstract

Cardiac hypertrophy is a common finding in human patients with inborn errors of long-chain fatty acid oxidation. Mice with either very long-chain acyl-CoA dehydrogenase deficiency (VLCAD−/−) or long-chain acyl-CoA dehydrogenase deficiency (LCAD−/−) develop cardiac hypertrophy. Cardiac hypertrophy, initially measured using heart/body weight ratios, was manifested most severely in LCAD−/− male mice. VLCAD−/− mice, as a group, showed a mild increase in normalized cardiac mass (8.8% hypertrophy compared to all wild-type [WT] mice). In contrast, LCAD−/− mice as a group showed more severe cardiac hypertrophy (32.2% increase compared to all WT mice). Based on a clear male predilection, we investigated the role of dietary plant estrogenic compounds commonly found in mouse diets due to soy or alfalfa components providing natural phytoestrogens or isoflavones in cardioprotection of LCAD−/− mice. Male LCAD−/− mice fed an isoflavone-free test diet had more severe cardiac hypertrophy (58.1% hypertrophy compared to WT mice fed the same diet. There were no significant differences in the female groups fed any of the diets. Echocardiography measurement performed on male LCAD deficient mice fed a standard diet at ~3 months of age confirmed the substantial cardiac hypertrophy in these mice compared with WT controls. Left ventricular wall thickness of interventricular septum and posterior wall was remarkably increased in LCAD−/− mice compared with that of WT controls. Accordingly, the calculated LV mass after normalization to body weight was increased about 40% in the LCAD−/− mice compared with WT mice. In summary, we found that metabolic cardiomyopathy, expressed as hypertrophy, developed in mice due to either VLCAD deficiency or LCAD deficiency; however, LCAD deficiency was the most profound and appeared to be attenuated either by endogenous estrogen in females or phytoestrogens in the diet as isoflavones in males.

Keywords: Long-chain acyl-CoA dehydrogenase, Very Long-chain acyl-CoA dehydrogenase, Cardiac hypertrophy, Isoflavones, Phytoestrogens

INTRODUCTION

Inborn errors of long-chain fatty acid metabolism are often characterized by cardiac hypertrophy, arrhythmia, and sudden death in the disease phenotype1 of affected children. These metabolic defects involve disruption of long-chain fatty acid catabolism, either in transport of long chain acylcarnitine esters into the mitochondria (as in carnitine palmitoyltransferase-2 or carnitine/acylcarnitine translocase deficiencies) or in long-chain fatty acid β-oxidation (as in very-long chain acyl-CoA dehydrogenase or long-chain 3-hydroxy-acyl-CoA dehydrogenase deficiencies). Additionally, in some of these cases, attenuation of disease severity has been correlated with the presence of residual enzyme activity24. The molecular basis of metabolic cardiomyopathy, expressed as hypertrophy, that results from primary defects in metabolism is poorly understood. Because the heart relies heavily on fatty acid oxidation (FAO) for energy production after birth, it has been considered that energy deprivation contributes to the development and progression of metabolic cardiomyopathy5. Additionally, certain inborn errors of long-chain fatty acid metabolism, as well as ischemia and reperfusion injury can result in accumulation of toxic long-chain acylcarnitines. These amphipathic molecules are thought to be arrhythmogenic because they alter membrane properties and integral proteins such as the sarcolemmal Na+/K+-ATPase.6 Long-chain acyl-coenzyme A dehydrogenase (LCAD)7 and very-long-chain acyl-coenzyme A dehydrogenase (VLCAD)8 deficient mouse models have been developed.

It has long been established that hormone status as determined by sex and age plays an important role in the development and progression of cardiovascular disease9. More recently plant derived estrogen-like compounds, such as the isoflavones, have been cited as agents that can influence the development and course of cardiovascular disease in people who eat a diet rich in certain plant proteins such as those derived from soy1015. There are no known human patients with LCAD deficiency; however, the LCAD deficient mouse model, which has a more severe phenotype7,8 than the VLCAD deficient model, has many shared features of human patients with VLCAD deficiency. We hypothesized that the mouse models for VLCAD and LCAD deficiencies would develop cardiac hypertrophy as seen in the corresponding human VLCAD deficiency disease. We initially investigated cardiac mass in both male and female LCAD deficient, VLCAD deficient and wild-type control mice. We then determined the effects of dietary isoflavones (phytoestrogens) on cardiac mass changes, and finally we evaluated heart mass and cardiac function in the C57BL/6 congenic LCAD deficient mice by echocardiography.

MATERIALS AND METHODS

Animals

All mutant mice in the study were homozygous at either the long-chain acyl-coenzyme A dehydrogenase locus (Acadl) (B6,129-Acadltm1Uab; LCAD−/−) (LCAD=enzyme; Acadl-mouse, ACADL-human=genes respectively)7 or the very long-chain acyl-coenzyme A dehydrogenase locus (Acadvl) (B6,129-Acadvltm1Uab; VLCAD −/−) (VLCAD=enzyme; Acadvl-mouse, ACADVL human=genes respectively)8, or had B6,129-Acadl+/+ and B6,129-Acadvl+/+ wild-type alleles (WT). An equivalent B6, 129 background was maintained by using intercrosses within each of the three genotypes. LCAD−/−, VLCAD−/− and wild-type mice in the initial studies were derived from mice of 129/SvEvTacBR (129S6) and C57BL/6NTacfBR (B6) (Taconic) genetic backgrounds. Mice used for the echocardiography studies were LCAD−/− B6 congenic mice, all males, ~ 12 weeks old, and fed a standard diet (Harlan-Teklad 7913 - NIH-31). Mice were negative for murine pathogens based on serological assays for 10 different viruses, aerobic bacterial cultures of nasopharynx and cecum, examinations for endo- and ectoparasites, and histopathology of all major organs. All animal protocols were approved by the Institutional Animal Care and Use Committee of the University of Alabama at Birmingham.

Heart Mass Measurement

Prior to sacrifice and sample collection, all mice except those in the diet studies were fasted for 22–28 hours. Following measurement of body weight, hearts were carefully excised and gently blotted on absorbent paper to remove blood from the ventricles prior to wet weight measurement.

Echocardiography Measurement

M-mode echocardiography was performed with the small animal echocardiography analysis system (Vevo 770, VisualSonics, Canada). In brief, mice were anesthetized with isoflurane inhalation in oxygen. Fur was removed from the upper sternal and subxiphoid areas. Limbs were attached to electrodes for electrocardiographic monitoring and timing of cardiac cycles. A two-dimensional short-axis view and M-mode tracings of the left ventricle were obtained with a 30 MHz transducer. Using analysis software provided by the manufacturer, the following data were obtained: left ventricular dimension at systole and diastole (LVID;s and LVID;d), posterior wall thickness at systole and diastole (LVPW;s and LVPW;d), interventricular septal wall thickness at systole and diastole) (IVS;s and IVS; d:), ejection fraction (EF%), fractional shortening (FS%), left ventricle volume at systole and diastole (volume;s and volume;d) and left ventricle stroke volume, heart rate, cardiac output, and left ventricular mass.

Diet Study Design

At 21 days of age LCAD−/− and LCAD+/+ mice were weaned onto either a standard laboratory diet (Teklad LM-485- the basal diet) or an isoflavone-free diet (Teklad diet TD.96155- the test diet) (Harlan-Teklad, Inc., Indianapolis, Indiana, USA). Mice were housed under 12 hour light/dark cycles in microisolator cages and sacrificed at 90–115 days of age for sample collection. The mice in the diet study were euthanized by CO2 inhalation and body and wet heart weight measurements were taken as above but without prior fasting.

Measurement of Isoflavones in Diets

Individual samples (0.5 g) of each diet were analyzed in duplicate. The isoflavones were extracted by mixing with 80% aqueous methanol (5 ml) at 4°C for 2 h. Dichlorofluorescein was added as an internal standard to the extracting solvent16. After centrifugation of the mixture at 3,000× g for 10 min, the supernatants were analyzed by reverse-phase HPLC on an Agilent Technologies HP 1100 instrument. Aliquots (10 µl) were separated on a 22 cm × 4.6 mm i.d. Aquapore C8 column with a 3 cm × 4.6 mm i.d. C8 guard column. The column was equilibrated in solvent A (90% double distilled water: 10% acetonitrile containing 0.1% trifluoroacetic acid). The isoflavones were eluted with a 0–30% gradient of solvent B (10% double distilled water: 90% acetonitrile containing 0.1% trifluoroacetic acid) in solvent A over a 30 min period at a flow rate of 1.5 ml/min. Eluted isoflavones were monitored with a diode array detector and assayed from their absorbance at 262 nm. Standard isoflavone mixtures also containing the internal standard were analyzed as part of the group of samples. Quantitative data were obtained by comparing the ratios of the areas of the unknown peaks to the internal standard to those in the standard isoflavone mixtures. Results are reported in aglucone units, i.e., the equivalent weight of the isoflavone aglucone regardless of the nature of glucose moiety (the isoflavones are present in soy as at least three β-glucoside conjugates, each with a different molecular weight). Within-assay variation for duplicate samples ranged from 1–3% and inter-assay variation from 3–5%.

Statistics

Groups were analyzed by either one-way or two-way analysis of variance (ANOVA) using the SigmaStat 2.03 as program parameters permitted.

RESULTS

Heart weight to body weight ratio in LCAD and VLCAD deficient mice

Figure 1 shows the effects of genotype, sex, and age on cardiac mass normalized to body weight. Genotype had the greatest effect on the development of cardiac hypertrophy (P < 0.001). The VLCAD−/− mice had a milder cardiac phenotype. VLCAD−/− mice, as a group, showed a mild increase in normalized cardiac mass (8.8% hypertrophy compared to all WT mice). In contrast, LCAD−/− mice as a group showed more severe cardiac hypertrophy (32.2% increase compared to all WT mice). Closer examination of cardiac mass in subgroups divided along genotype, age, and sex lines showed that cardiac hypertrophy was less severe in females and certain groups of older mice with either LCAD or VLCAD deficiency, as detailed below.

Fig. 1
Heart weight to body weight ratios in younger (6–9 week old) and older (25–30 week old) male and female LCAD−/−, VLCAD−/− and WT mice

Sex was the next most influential modulator of cardiac mass (P < 0.001). While sex had no effect on cardiac mass in wild-type mice, cardiac hypertrophy was more severe in both VLCAD−/− and LCAD−/− males than females of like genotype. Sex and genotype interacted significantly (P < 0.001). Even in younger VLCAD−/− males, when cardiac hypertrophy was most prominent, the sex disparity in cardiac mass was greater in LCAD−/− mice (13% difference between the sexes) than VLCAD−/− mice (3% difference).

Significant, but least influential was age (P < 0.02). Mice were divided into young (6–10 weeks old) and adult mice (15–44 weeks old). Some groups of mice displayed a modest decrease in cardiac hypertrophy in adults. The greatest attenuation in cardiac hypertrophy, toward the normal range, was seen in older, female LCAD−/− mice (a 12% decrease when compared to young LCAD−/− females). Older VLCAD−/− males also showed regression in cardiac hypertrophy back to the normal range. No age effect on hypertrophy was seen in male LCAD−/− mice. When VLCAD−/− mice were excluded from the analysis, the age effect on cardiac hypertrophy was not significant (P=0.06).

Diet effects on the severity of metabolic cardiomyopathy in LCAD deficient mice

Recent studies have associated high dietary intake of isoflavones, especially those found in soy proteins, with resistance to human cardiovascular disease10. Because soy and alfalfa are used as protein sources in the standard autoclavable rodent diet that we fed our colony, we considered that the diet might be rich in isoflavones and other phytoestrogens. We hypothesized that these compounds may have a sparing effect on the severity of the cardiac hypertrophy phenotype in LCAD−/− mice, especially males, by providing a ‘feminizing’ effect, much like the endogenous estrogen of LCAD−/− females.

We designed a feeding trial experiment to test this hypothesis. Most striking was the effect of the isoflavone-free test diet on cardiac hypertrophy in male LCAD−/− mice (Figure 2). No differences were detected between any of the female groups. As expected, 32.4% hypertrophy was observed in LCAD−/− males on the basal soy-based diet vs. WT males fed the same basal diet (P < 0.001). Cardiac hypertrophy, however, was exacerbated in LCAD−/− males fed the isoflavone-free test diet, with 58.1% hypertrophy as compared to WT males on the same test diet (P < 0.001). The difference between the LCAD−/− males fed the basal or test diets was also significant (P < 0.01). The test diet had no significant effect on cardiac mass in WT mice.

Fig. 2
Diet effects on heart weight to body weight ratio in LCAD−/− mice

Male LCAD−/− mice fed the isoflavone-free test diet were significantly smaller than WT males on the test diet (P < 0.01) and male LCAD−/− mice on the basal diet (P<0.001, Figure 3). The difference between LCAD−/− males on the test diet and WT males on the standard diet was not significant (P=0.065). No detectable effects of diet on weight gain were noted between wild-type groups of the same sex. Also, no differences in weight gain were noted among any of the female groups on either diet.

Fig. 3
Body mass differences between LCAD−/− and LCAD+/+ mice

To define the isoflavone content of the two diets used in the diet study, the isoflavone content of each feed was measured (Table 1). The patterns of the isoflavone conjugates (no malonylglucosides and a large proportion of acetylglucosides) were consistent with the use of toasted soy protein in the diet. Total isoflavone concentration implied that the soy protein constituted about 5% by weight of the total diet.

Table 1
Isoflavone analyses of basal and test (soy-free) diets.

In order to further quantify the original observation of cardiac hypertrophy based on heart to body weight ratios, we performed echocardiography studies on later groups of mice. Echocardiography measurement performed on male LCAD deficient mice at the age of ~3 months confirmed the substantial cardiac hypertrophy in these mice compared with wild type controls (Figure 4, representative M-mode image of the hearts from a LCAD−/− and a WT mice). Left ventricular wall thickness of interventricular septum and posterior wall was remarkably increased in LCAD−/− mice compared with that of control mice (Table 2). Accordingly, the calculated LV mass after normalized to body weight was increased about 40% in the LCAD−/− mice compared with WT mice (Table 2 and Figure 4). Interestingly, cardiac performance appeared to be well maintained with normal EF%, FS% and cardiac output (Table 2). Heart rate in the LCAD−/− mice was also comparable to that in WT mice (Table 2).

Fig. 4
Representative M-mode image of the hearts from a WT (A) and an LCAD−/− (B) mice
Table 2
Echocardiography measurement

DISCUSSION

We propose the LCAD deficient mice as a model of the metabolically induced cardiomyopathy seen in children with severe VLCAD deficiency. Children born with severe deficiencies in long-chain FAO usually present in metabolic crisis before six months of age and episodes of metabolic crisis pose serious threats to survival17. One group reported successful treatment of a VLCAD deficient patient with medium-chain triglyceride therapy18. Another approach of therapy for cardiomyopathy in human VLCAD deficiency was administration of the anaplerotic, odd-chain fatty acid containing triglyceride, triheptanoin19. No human cases of LCAD deficiency have been documented. Previously reported cases of human LCAD deficiency have since been reclassified as VLCAD deficiency20. We also have developed VLCAD deficient mice and they also develop metabolic disease, including cardiac hypertrophy, albeit milder than that seen in LCAD deficient mice8. The cardiac hypertrophy seen in mice with LCAD deficiency is comparatively milder than the cardiac hypertrophy associated with VLCAD deficiency in human beings. Reasons for this disparity may arise from a diminished reliance on fatty acid β-oxidation for cardiac energy homeostasis in mice, from greater substrate overlap between LCAD and VLCAD activities in mice, or from a greater resistance in mice to the effects of toxic metabolites.

Although cardiac hypertrophy in the LCAD−/− mice was quite remarkable compared with many mouse models with cardiac defects, it is interesting to notice that cardiac performance of the LCAD−/− mice was well maintained at least for the ages analyzed. Furthermore, left ventricular dimension was not changed despite the increasing thickness of the left ventricular wall. This is similar to a pattern of concentric cardiac hypertrophy seen in patients with left ventricular pressure overload. Therefore, the cardiac hypertrophy manifested in the LCAD−/− mice represents a typical compensatory hypertrophy. It is not clear yet if any physiological and/or pathological stress would lead to the development of decompensatory hypertrophy or even progress to heart failure. It is interesting that at least aging, as studied here, did not exacerbate the hypertrophy progression.

As we report here, variation in more chronic features of cardiac hypertrophy can be found as well, e.g., the mild cardiac hypertrophy of VLCAD−/− male mice that resolves with age contrasts with the more severe hypertrophy of LCAD−/− males that persists well into adulthood. Furthermore, a protective effect against cardiac hypertrophy was documented in both VLCAD−/− and LCAD−/− females, with the greater effect in the latter. Whether the females benefit more from the presence of higher estrogenic hormones or from the absence of androgenic hormones remains to be proven. If the effect results from the presence of estrogens, then we would predict cardiac hypertrophy to be more severe in females following reproductive senescence.

The interaction between hormone status and the development of cardiac disease is seen not only in the different cardiac disease rates between men and premenopausal women, but also in the rapid rise in heart disease rates seen in postmenopausal women21. These studies demonstrate the protective effects of estrogenic hormones in the setting of metabolic disease. The plasticity of the hypertrophic response evident in LCAD−/− mice suggests that the hypertrophic response, even an insult as specific as a metabolic enzyme deficiency, is likely the result of complex processes involving signaling pathways that overlap with those downstream of the estrogen receptor. Another possibility is that the gene expression patterns in response to estrogenic compounds yield a myocardium resistant to metabolic insults.

Perhaps most surprising is the demonstrable benefits of a diet rich in soy isoflavones to male LCAD−/− mice. Additionally, we found reduced body weight (Figure 3) in the group with the most severe cardiac hypertrophy, the LCAD−/− male mice eating the phytoestrogen-free test diet. We speculate that the two effects are not linked. It is worth noting that this degree of hypertrophy was achieved on a low fat diet (5% by weight) and that the mice were not challenged with fasting or exercise, conditions that favor the oxidation of fatty acids in the heart. While a simpler design might have been to add back one or more purified isoflavones to the isoflavone-free diet, a comparison of the measurable isoflavones in each of the diets illustrates the complexity of phytoestrogen composition in standard diet. Of the isoflavones present in the laboratory diet, genistein binds to the estrogen beta receptor with an affinity comparable to 17β-estradiol22. The beta-glucosides daidzin, genistin, and glycitin and their corresponding 6’-Oacetyl esters are hydrolyzed and the resulting aglucones absorbed in the intestine both proximally and distally; they are also metabolized further to equol and other bioactive compounds that are also absorbed23. Because of this variability in absorption kinetics and because several isoflavone compounds are present in the standard laboratory diet, it is difficult to be certain which compound or combination of compounds produces attenuation of cardiac hypertrophy in LCAD−/− males. We speculate that the isoflavones are modulating cardiomyocyte cell signaling through activation of the of the estrogen β receptor as described for other organ systems22. The LCAD−/− mice are severely cold intolerant; however, we demonstrated previously that soy-based, isoflavone-rich diets make LCAD−/− mice more cold resistant as compared to those fed a case-inisoflavone free diet24. In contrast the positive attributes of isoflavone-rich diets are not universal, as in other studies this type of diet was detrimental to mice with a mutation in the α-myosin heavy chain gene in which the male mice developed severe, dilated cardiomyopathy when fed a soy-based diet25.

Cardiac hypertrophy associated with primary defects in FAO has been considered, at least in part, a disease arising out of inadequate energy production19. This was supported by the observation that in adult human beings the majority of cardiac energy production is derived from long-chain fatty acid β-oxidation under fasting conditions or during sustained exercise26. Furthermore, children born with ‘downstream’ deficiencies of medium and short chain fatty acid β-oxidation do not develop cardiac hypertrophy presumably because they can partially oxidize long-chain fatty acids and derive energy production from the pathway5. An alternate hypothesis is that the formation of long-chain fatty esters such as long-chain acylcarnitine or long-chain acyl-CoA stimulates the development of cardiac hypertrophy. Studies using rats treated with etomoxir showed that blocking long-chain fatty acid β-oxidation by preventing entrance of long-chain fatty acid substrates into the mitochondria is sufficient to evoke a hypertrophic response27. Another possibility is that the more robust hypertrophy seen in LCAD−/− mice results more from abnormal metabolite effects than interruption of energy production from long- chain fatty acids. The similarity of response among male and female mice to etomoxir treatment suggests that inhibition of FAO at the level of CPT1 differs from that seen in LCAD−/− and VLCAD−/− mice8 in that it is not influenced by estrogen modulated effects.

These studies demonstrate the complexity underlying what has been characterized as the programmed, stereotypic response of cardiac hypertrophy. We expect that further investigation of these models will reveal more facets of the interplay between energy metabolism, gene regulation, and the hormonal milieu that underlie metabolic cardiomyopathy.

Fig. 5
Left ventricular mass to body weight ratio

ACKNOWLEDGEMENTS

We thank Michelle Smith for assistance with the isoflavone analyses. The project described was supported by National Institutes of Health (NIH) grants RO1-RR02599 (PAW) and training grant T-32-RR00493 (KBC) from the National Center for Research Resources (NCRR), and R01-HL084456 (QY) from the National Heart, Lung and Blood Institute (NHLBI).) and P50 AT00477 from the National Center for Complementary and Alternative Medicine (NCCAM) and the Office of Dietary Supplements (ODS) to the Purdue University-University of Alabama at Birmingham Botanicals Center for Age-related Disease (Connie Weaver, PI). This paper’s contents are solely the responsibility of the authors and do not necessarily represent the official views of NCRR, NHLBI, NCCAM, ODS or NIH.

Grant support: R01-RR02599, T32-RR00493, R01-HL084456, P50-AT00477

Abbreviations

ANOVA
Analysis of Variance
FAO
Fatty acid oxidation
LCAD
Long-chain acyl-CoA dehydrogenase
VLCAD
Very long-chain acyl-CoA dehydrogenase
WT
Wild-type
LVID;s and LVID;d
left ventricular dimension at systole and diastole
LVPW;s and LVPW;d
wall thickness at systole and diastole
IVS;s and IVS; d
interventricular septal wall thickness at systole and diastole
EF%
ejection fraction
FS%
fractional shortening
volume;s and volume;d
left ventricle volume at systole and diastole

Footnotes

DISCLOSURE/DUALITY OF INTERESTS

The authors have no conflicts of interest to disclose.

References

1. Rinaldo P, Matern D, Bennett MJ. Fatty acid oxidation disorders. Annu Rev Physiol. 2002;64:477–502. [PubMed]
2. Andresen BS, Olpin S, Poorthuis BJ, et al. Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency. Am J Hum Genet. 1999;642:479–494. [PubMed]
3. Bonnefont JP, Taroni F, Cavadini P, et al. Molecular analysis of carnitine palmitoyltransferase II deficiency with hepatocardiomuscular expression. Am J Hum Genet. 1996;585:971–978. [PubMed]
4. Pande SV. Carnitine-acylcarnitine translocase deficiency. Am J Med Sci. 1999;3181:22–27. [PubMed]
5. Roe CR. Diagnostic approach to disorders of fat oxidation. International Pediatrics. 1996;11:109–113.
6. Corr PB, Yamada KA. Selected metabolic alterations in the ischemic heart and their contributions to arrhythmogenesis. Herz. 1995;203:156–168. [PubMed]
7. Kurtz DM, Rinaldo P, Rhead WJ, et al. Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation. Proc Natl Acad Sci U S A. 1998;9526:15592–15597. [PubMed]
8. Cox KB, Hamm DA, Millington DS, et al. Gestational, pathologic and biochemical differences between very long-chain acyl-CoA dehydrogenase deficiency and long-chain acyl-CoA dehydrogenase deficiency in the mouse. Hum Mol Genet. 2001;1019:2069–2077. [PubMed]
9. Barrett-Connor E, Grady D. Hormone replacement therapy, heart disease, and other considerations. Annu Rev Public Health. 1998;19:55–72. [PubMed]
10. Burke GL, Vitolins MZ, Bland D. Soybean isoflavones as an alternative to traditional hormone replacement therapy: are we there yet? J Nutr. 2000;1303:664S–665S. [PubMed]
11. Lissin LW, Cooke JP. Phytoestrogens and cardiovascular health. J Am Coll Cardiol. 2000;356:1403–1410. [PubMed]
12. Martin D, Song J, Mark C, et al. Understanding the cardiovascular actions of soy isoflavones: potential novel targets for antihypertensive drug development. Cardiovasc Hematol Disord Drug Targets. 2008;84:297–312. [PubMed]
13. Mann GE, Bonacasa B, Ishii T, et al. Targeting the redox sensitive Nrf2-Keap1 defense pathway in cardiovascular disease: protection afforded by dietary isoflavones. Curr Opin Pharmacol. 2009 [PubMed]
14. Carlson S, Peng N, Prasain JK, et al. Gend Med. 5 Suppl A. 2008. Effects of botanical dietary supplements on cardiovascular, cognitive, and metabolic function in males and females; pp. S76–S90. [PMC free article] [PubMed]
15. Wenzel U, Fuchs D, Daniel H. Protective effects of soy-isoflavones in cardiovascular disease. Identification of molecular targets. Hamostaseologie. 2008:281–2:85-88. [PubMed]
16. Coward L, Smith M, Kirk M, et al. Chemical modification of isoflavones in soyfoods during cooking and processing. Am J Clin Nutr. 1998;686 Suppl:1486S–1491S. [PubMed]
17. Roe CR, Ding J. Mitochondrial Fatty Acid Oxidation Disorders. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York: McGraw-Hill; 2001. pp. 2297–2326.
18. Brown-Harrison MC, Nada MA, Sprecher H, et al. Very long chain acyl-CoA dehydrogenase deficiency: successful treatment of acute cardiomyopathy. Biochem Mol Med. 1996;581:59–65. [PubMed]
19. Roe CR, Sweetman L, Roe DS, et al. Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J Clin Invest. 2002;1102:259–269. [PMC free article] [PubMed]
20. Yamaguchi S, Indo Y, Coates PM, et al. Identification of very-long-chain acyl-CoA dehydrogenase deficiency in three patients previously diagnosed with long-chain acyl-CoA dehydrogenase deficiency. Pediatr Res. 1993;341:111–113. [PubMed]
21. Barrett-Connor E, Bush TL. Estrogen and coronary heart disease in women. JAMA. 1991;(26514):1861–1867. [PubMed]
22. Kuiper GG, Lemmen JG, Carlsson B, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 1998:4252–4263. [PubMed]
23. Setchell KD, Cassidy A. Dietary isoflavones: biological effects and relevance to human health. J Nutr. 1999;1293:758S–767S. [PubMed]
24. Schuler AM, Barnes S, Gower BA, et al. Dietary phytoestrogens increase metabolic resistance (cold tolerance) in long-chain acyl-CoA dehydrogenase-deficient mice. J Nutr. 2004;1345:1028–1031. [PubMed]
25. Stauffer BL, Konhilas JP, Luczak ED, et al. Soy diet worsens heart disease in mice. J Clin Invest. 2006;1161:209–216. [PMC free article] [PubMed]
26. Ascuitto RJ, Ross-Ascuitto NT. Substrate metabolism in the developing heart. Semin Perinatol. 1996;206:542–563. [PubMed]
27. Zarain-Herzberg A, Rupp H, Elimban V, et al. Modification of sarcoplasmic reticulum gene expression in pressure overload cardiac hypertrophy by etomoxir. FASEB J. 1996;1011:1303–1309. [PubMed]