PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of aapspharmspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
 
AAPS PharmSciTech. 2004 March; 5(1): 70–85.
Published online 2004 February 17. doi:  10.1208/pt050111
PMCID: PMC2784862

Phospholipid-stabilized nanoparticles of cyclosporine a by rapid expansion from supercritical to aqueous solution

Abstract

The purpose of this research was to form stable suspensions of submicron particles of cyclosporine A, a water-insoluble drug, by rapid expansion from supercritical to aqueous solution (RESAS). A solution of cyclosporine A in CO2 was expanded into an aqueous solution containing phospholipid vesicles mixed with nonionic surfactants to provide stabilization against particle growth resulting from collisions in the expanding jet. The products were evaluated by measuring drug loading with high performance liquid chromatography (HPLC), particle sizing by dynamic light scattering (DLS), and particle morphology by transmission electron microscopy (TEM) and x-ray diffraction. The ability of the surfactant molecules to orient at the surface of the particles and provide steric stabilization could be manipulated by changing process variables including temperature and suspension concentration. Suspensions with high payloads (up to 54 mg/mL) could be achieved with a mean diameter of 500 nm and particle size distribution ranging from 40 to 920 nm. This size range is several hundred nanometers smaller than that produced by RESAS for particles stabilized by Tween 80 alone. The high drug payloads (≈10 times greater than the equilibrium solubility), the small particle sizes, and the long-term stability make this process attractive for development.

Keywords: supercritical fluid, carbon dioxide, rapid expansion, water-insoluble

Full Text

The Full Text of this article is available as a PDF (751K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Pace SN, Pace GW, Parikh I, Mishra AK. Novel injectable formulations of insoluble drugs. Pharm Technol. 1999;23:116–134.
2. Broadhead J, Rouan SKE, Rhodes CT. The spray drying of pharmaceuticals. Drug Dev Ind Pharm. 1992;18(11–12):1169–1206. doi: 10.3109/03639049209046327. [Cross Ref]
3. Masters K. Spray Drying Handbook. 3rd ed. Hoboken, NJ: John Wiley and Sons; 1979.
4. Chasin M, Langer R, Swarbick J, editors. Biodegradable Polymers as Drug Delivery Systems. New York, NY: Marcel Dekker; 1990.
5. Bakan JA. Microencapsulation. In: Swarbrick J, Boylan JC, editors. Encyclopedia of Pharmaceutical Technology. New York, NY: Marcel Dekker; 1994. pp. 423–441.
6. Puisieux F, Barratt G, Couarraze G, et al. Polymeric micro- and nanoparticles as drug carriers. In: Dumitriu S, et al., editors. Polymeric Biomaterials. New York, NY: Marcel Dekker; 1994. pp. 749–794.
7. Byers JE, Peck GE. The effect of mill variables on a granulation milling process. Drug Dev Ind Pharm. 1990;16(11):1761–1779. doi: 10.3109/03639049009025785. [Cross Ref]
8. Aiache JM, Beyssac E. Powders as dosage forms. In: Swarbrick J, Boylan JC, editors. Encyclopedia of Pharmaceutical Technology. New York, NY: Marcel Dekker; 1994. pp. 389–420.
9. Illig KJ, Mueller RL, Ostrander KD, Swanson JR. Use of microfluidizer processing for preparation of pharmaceutical suspensions. Pharm Technol. 2004;20:78–88.
10. Parrott EL. Comminution. In: Swarbrick J, Boylan JC, editors. Encyclopedia of Pharmaceutical Technology. New York, NY: Marcel Dekker; 1994. pp. 101–121.
11. Rubinstein MH, Gould P. Particle size reduction in the ball mill. Drug Dev Ind Pharm. 1987;13(1):81–92. doi: 10.3109/03639048709040157. [Cross Ref]
12. Subramaniam B, Rajewski RA, Snavely K. Pharmaceutical processing with supercritical carbon dioxide. J Pharm Sci. 1997;86(8):885–890. doi: 10.1021/js9700661. [PubMed] [Cross Ref]
13. Phillips EM, Stella VJ. Rapid expansion from supercritical solutions: application to pharmaceutical processes. Int J Pharm. 1992;94:1–10. doi: 10.1016/0378-5173(93)90002-W. [Cross Ref]
14. Tom JW, Debenedetti PG, Jerome R. Precipitation of poly(L-lactic acid) and composite poly(L-lactic acid)-pyrene particles by rapid expansion of supercritical solutions. J Supercrit Fluids. 1994;7:9–29. doi: 10.1016/0896-8446(94)90003-5. [Cross Ref]
15. Mawson S, Johnston KP, Combes JR, DeSimone JM. Formation of poly(1,1,2,2-tetrahydroperfuorodecyl acrylate) submicron fibers and particles from supercritical carbon dioxide solutions. Macromolecules. 1995;28(9):3182–3191. doi: 10.1021/ma00113a021. [Cross Ref]
16. Alessi P, Cortesi A, Kikic I, Foster NR, Macnaughton SJ, Colombo I. Particle production of steroid drugs using supercritical fluid processing. Ind Eng Chem Res. 2004;35:4718–4726. doi: 10.1021/ie960202x. [Cross Ref]
17. Mohamed RS, Halverson DS, Debenedetti PG, Prud'homme RK. Solids formation after the expansion of supercritical mixtures. In: Johnston KP, Penninger JML, editors. Supercritical Fluid Science and Technology. Washington, DC: American Chemical Society; 1989. pp. 355–378.
18. Matson DW. Making powders and films from supercritical fluid solutions. Chemtech. 1989;19(8):480–486.
19. Chang CJ, Randolph AD. Precipitation of microsize organic particles from supercritical fluids. AIChE J. 1989;35(11):1876–1882. doi: 10.1002/aic.690351114. [Cross Ref]
20. Domingo C, Berends E, Rosmalen GM. Precipitation of ultrafine crystals from the rapid expansion of supercritical solutions over a capillary and a frit nozzle. J Supercrit Fluids. 1997;10:39–55. doi: 10.1016/S0896-8446(97)00011-9. [Cross Ref]
21. Lele AK, Shine AD. Effect of RESS dynamics on polymer morphology. Ind Eng Chem Res. 1994;33:1476–1485. doi: 10.1021/ie00030a007. [Cross Ref]
22. Krukonis VJ. Processing with supercritical fluids: overview and applications. In: Chapentier BA, Sevenants MR, editors. Supercritical Fluid Extraction and Chromatography: Techniques and Applications. Washington, DC: American Chemical Society; 1988. pp. 26–43.
23. Charoenchaitrakool M, Dehghani F, Foster NR, Chan HK. Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals. Ind Eng Chem Res. 2000;39:4794–4802. doi: 10.1021/ie000151a. [Cross Ref]
24. Debenedetti PG. Supercritical fluids as particle formation media. In: Kiran E, Levelt Sengers JMH, editors. Supercritical Fluids: Fundamentals for Application. Boston, MA: Kluwer Academic Publishers; 1994. pp. 719–729.
25. Young TJ, Mawson S, Johnston KP, Henriksen IB, Pace GW, Mishra AK. Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs. Biotechnol Prog. 2000;16(3):402–407. doi: 10.1021/bp000032q. [PubMed] [Cross Ref]
26. Sun YP, Guduru R, Lin F, Whiteside T. Preparation of nanoscale semiconductors through the rapid expansion of supercritical solution into liquid solution. Ind Eng Chem Res. 2000;39:5663–5669.
27. Wabel C. Influence of Lecithin on Structure and Stability of Parenteral Fat Emulsions. Erlangen, Germany: Department of Pharmaceutics, University of Erlangen-Nurnberg; 1998.
28. Lieberman HA, Rieger MM, Banker GS, editors. Pharmaceutical Dosage Forms: Disperse Systems. 2nd ed. New York, NY: Marcel Dekker; 1998.
29. New RRC, Rickwood D, Hames BD, editors. Liposomes: A Practical Approach. New York, NY: Oxford University Press; 1990.
30. Sujatha J, Mishra AK. Effect of ionic and neutral surfactants on the properties of phospholipid vesicles: investigation using fluorescent probes. J Photochem Photobiol A, Chem. 1997;104:173–178. doi: 10.1016/S1010-6030(96)04537-6. [Cross Ref]
31. Weiner N, Martin F, Riaz M. Liposomes as a drug delivery system. Drug Dev Ind Pharm. 1989;15(10):1523–1554. doi: 10.3109/03639048909052502. [Cross Ref]
32. Crowe JH, Crowe LM, Carpenter JF, Wistrom CA. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J. 1987;242:1–10. [PubMed]
33. Talsma H, Steenbergen MJ, Crommelin DJA. The cryopreservation of liposomes: 3. Almost complete retention of a water-soluble marker in small liposomes in a cryoprotectant containing dispersion after a freezing/thawing cycle. Int J Pharm. 1991;77:119–126. doi: 10.1016/0378-5173(91)90309-C. [Cross Ref]
34. Cevc G, editor. Phospholipids Handbook. New York, NY: Marcel Dekker; 1993.
35. Socaciu C, Jessel R, Diehl HA. Competitive carotenoid and cholesterol incorporation into liposomes: effects on membrane phase transition, fluidity, polarity and anisotropy. Chem Phys Lipids. 2000;106:79–88. doi: 10.1016/S0009-3084(00)00135-3. [PubMed] [Cross Ref]
36. Yang J, Appleyard J. The main phase transition of mica-supported phosphatidylcholine membranes. J Phys Chem B. 2000;104:8097–8100. doi: 10.1021/jp001403o. [Cross Ref]
37. Grau A, Ortiz A, Godos A, Gomez-Fernandez JC. A biophysical study of the interaction of the lipopeptide antibiotic iturin A with aqueous phospholipid bilayers. Arch Biochem Biophys. 2000;377(2):315–323. doi: 10.1006/abbi.2000.1791. [PubMed] [Cross Ref]
38. Fresta M, Ricci M, Rossi C, Furneri PM, Puglisi G. Antimicrobial nonapeptide leucinostatin A-dependent effects on the physical properties of phospholipid model membranes. J Colloid Interface Sci. 2000;226:222–230. doi: 10.1006/jcis.2000.6816. [Cross Ref]
39. Moya S, Donath E, Sukhorukov GB, et al. Lipid coating on polyelectrolyte surface modified colloidal particles and polyelectrolyte capsules. Macromolecules. 2000;33:4538–4544. doi: 10.1021/ma9914974. [Cross Ref]
40. Shobini J, Mishra AK. Effect of leucinyl-phenylalanyl-valine on DMPC liposome membrane. Spectrochim Acta [A] 2000;56:2239–2248. doi: 10.1016/S1386-1425(00)00308-5. [PubMed] [Cross Ref]
41. Shine AD, inventor, University of Delaware, assignee. Precipitation of Homogeneous Mixtures From Supercritical Fluid Solutions. US patent 5 290 827. March 1, 1994.

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists