PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actacInternational Union of Crystallographysearchsubscribearticle submissionjournal home pagethis article
 
Acta Crystallogr C. 2009 November 15; 65(Pt 11): m431–m435.
Published online 2009 October 17. doi:  10.1107/S0108270109035902
PMCID: PMC2773731

Insight into the structures of [M(C5H4I)(CO)3] and [M 2(C12H8)(CO)6] (M = Mn and Re) containing strong I(...)O and π(CO)–π(CO) inter­actions

Abstract

The compounds tricarbonyl(η5-1-iodo­cyclo­penta­dienyl)­man­gan­ese(I), [Mn(C5H4I)(CO)3], (I), and tricarbonyl(η5-1-iodo­cyclo­penta­dienyl)rhenium(I), [Re(C5H4I)(CO)3], (III), are isostructural and isomorphous. The compounds [μ-1,2(η5)-acetyl­enedicyclo­penta­dienyl]bis­[tricarbonyl­manganese(I)] or bis­(cymantrenyl)acetyl­ene, [Mn2(C12H8)(CO)6], (II), and [μ-1,2(η5)-acetyl­enedicyclo­penta­dienyl]bis­[tri­carbonyl­rhenium(I)], [Re2(C12H8)(CO)6], (IV), are isostructural and isomorphous, and their mol­ecules display inversion symmetry about the mid-point of the ligand C C bond, with the (CO)3 M(C5H4) (M = Mn and Re) moieties adopting a transoid conformation. The mol­ecules in all four compounds form zigzag chains due to the formation of strong attractive I(...)O [in (I) and (III)] or π(CO)–π(CO) [in (I) and (IV)] inter­actions along the crystallographic b axis. The zigzag chains are bound to each other by weak inter­molecular C—H(...)O hydrogen bonds for (I) and (III), while for (II) and (IV) the chains are bound to each other by a combination of weak C—H(...)O hydrogen bonds and π(Csp 2)–π(Csp 2) stacking inter­actions between pairs of mol­ecules. The π(CO)–π(CO) contacts in (II) and (IV) between carbonyl groups of neighboring mol­ecules, forming pairwise inter­actions in a sheared anti­parallel dimer motif, are encountered in only 35% of all carbonyl inter­actions for transition metal–carbonyl compounds.

Comment

One of the rapidly growing fields in metalloorganic chemistry is the synthesis of new materials. Examples include dendrimers (Tomalia et al., 1990 [triangle]; Stulgies et al., 2005 [triangle]; Astruc et al., 2008 [triangle]), staffanes (Kaszynski et al., 1992 [triangle]), Diederich’s carbon nets (Diederich & Rubin, 1992 [triangle]), and various novel electronic, photonic and magnetic materials (Barlow & O’Hare, 1997 [triangle]; Elschenbroich et al., 2005 [triangle]; Kinnibrugh et al., 2009 [triangle]). Because of the increasing inter­est in this area, we have focused our studies on structural investigations of the title compounds, (I)–(IV) (Figs. 1 [triangle] and 2 [triangle]), which can be used as starting compounds for the construction of new materials (Sterzo et al., 1989 [triangle]). This work reports the first structural studies of the monohalogenated derivatives (η5-C5H4 X)M(CO)3 [for (I): M = Mn and X = I; for (III): M = Re and X = I] and the dinuclear [(CO)3 MC5H4]C C[C5H4 M(CO)3] compounds [for (II): M = Mn; for (IV): M = Re].

An external file that holds a picture, illustration, etc.
Object name is c-65-0m431-scheme1.jpg

Figure 1
A view of the mol­ecule of (I), showing the atom-numbering scheme. The Re analog, (III), is isostructural. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
Figure 2
A view of the mol­ecule of (II), showing the atom-numbering scheme. The Re analog, (IV), is isostructural. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Atoms labelled ...

The mean values of the geometric parameters for compounds (I)–(IV) are in accordance with those previously reported (Table 1 [triangle]) for 89 monosubstituted cymantrenes and 27 (η5-C5H4 X)Re(CO)3 compounds, which were retrieved from the 2009 version of the Cambridge Structural Database (CSD; Allen, 2002 [triangle]) using ConQuest (Version 1.11; Macrae et al., 2006 [triangle]), as well as with the unsubstituted compounds C5H5 M(CO)3 (M = Mn and Re) (Fitzpatrick, Le Page et al., 1981 [triangle]; Cowie et al., 1990 [triangle]). The monosubstituted (η5-C5H4 X)M(CO)3 complexes (X = any atom; M = Mn and Re) were considered with the following search criteria: (a) three-dimensional coordinates and R < 0.10; (b) no errors; (c) no crystallographic disorder; (d) no polymer structures. The (O)C—Mn—C(O) angle is in accord with a tendency for decreasing the pyramidality of the M(CO)3 fragment with increasing π-donor capacity of the cyclic polyene (Fitzpatrick, Le Page et al., 1981 [triangle]): 88.22 (8)° for (C6H6)Cr(CO)3 (Rees & Coppens, 1973 [triangle]), 90.0 (2)° for CpRe(CO)3 (Fitzpatrick, Le Page & Butler, 1981 [triangle]), 92.02 (5)° for CpMn(CO)3 (Cowie et al., 1990 [triangle]), 95.6° for (C4H4)Fe(CO)3 (Hall et al., 1975 [triangle]) and 97.03 (3)° for (C4Ph4)Fe(CO)3 (Dodge & Schomaker, 1965 [triangle]). The M—C—O bond angles do not differ significantly from 180°.

Table 1
Mean values of selected geometric parameters (Å, °) for (I), (II), (III) and (IV), and from the Cambridge Structural Database (CSD; Allen, 2002 [triangle])

The M(CO)3 (M = Mn and Re) fragment possess approximate C 3v symmetry, while coordination to the η5-C5H4 X ring lowers the mol­ecular symmetry to C 1 (Fig. 3 [triangle]). Compounds (I)–(IV) possess different mutual dispositions of the carbonyl groups and η5-C5H4 X rings: the C6 O1 carbonyl group for each of (I) and (III) is in an eclipsed position relative to the substituted C atom of the η5-C5H4I ring, while the C7 O1 carbonyl group of each of (II) and (IV) is in the transoid position with respect to the substitutent-bearing C atom (Figs. 3 [triangle] and 4 [triangle]).

Figure 3
The conformation of (I), showing one CO group eclipsed by the halogen substituent on the C5 ring.
Figure 4
The conformation of (II), showing the CO group in a transoid position relative to the substituent on the C5 ring.

Compounds (II) and (IV) crystallize with the mol­ecules lying across crystallographic inversion centers. Each mol­ecule consists of two identical [(CO)3 M(C5H4)C ] (M = Mn and Re) parts with the M(CO)3 moieties in transoid positions. We suggest that (II) and (IV) adopt the transoid structure due to the presence of strong attractive inter­molecular π(CO)–π(CO) inter­actions in the sheared parallel packing motif (see below). In contrast, the only analogous compound found in the literature, viz. [(CO)3Mn(C5H4)C C(C7H5)Cr(CO)3]BF4, possesses a syn-facial (cisoid) conformation of M(CO)3 moieties, due to the formation of strong attractive inter­molecular π(CO)–π(CO) inter­actions with a perpendicular packing motif (Tamm et al., 2000 [triangle]). The conformation of (CO)3 M(C5H4) moieties thus appears to depend, at least in part, on the type of π(CO)–π(CO) inter­actions formed.

The mol­ecules in all four structures form zigzag chains due to the formation of strong attractive inter­actions. For (I) and (III), the zigzag chains along the crystallographic b axis involve strong attractive I(...)O inter­actions [I1(...)O2A(2 − x, −An external file that holds a picture, illustration, etc.
Object name is c-65-0m431-efi1.jpg + y, An external file that holds a picture, illustration, etc.
Object name is c-65-0m431-efi2.jpg − z) = 3.233 (2) Å and I1(...)O2A—C7A = 112.1 (2)° for (I), and I1(...)O2A(2 − x, −An external file that holds a picture, illustration, etc.
Object name is c-65-0m431-efi1.jpg + y, An external file that holds a picture, illustration, etc.
Object name is c-65-0m431-efi2.jpg − z) = 3.231 (4) Å and I1(...)O2A—C7A 110.6 (3)° for (III)] (Fig. 5 [triangle]). The attractive nature of halogen–oxygen inter­actions is caused by electrostatic effects, polarization, charge transfer and dispersion contributions. The tendency to form short X(...)E (E = O and N) inter­actions (X = I > Br > Cl) increases with the magnitude of their polarizabilities (Lommerse et al., 1996 [triangle]). The directionality of that type of inter­action has been inter­preted in terms of charge transfer between the highest occupied mol­ecular orbital of E and the lowest unoccupied mol­ecular orbital of X (Ramasubbu et al., 1986 [triangle]). The strength of halogen–carbonyl inter­actions has been characterized as a function of two geometric parameters, the halogen–oxygen distance (X(...)O) and the halogen–oxygen–carbon angle (X(...)O—C). The inter­action energy of the most strongly bound system was found to be 2.39 kcal mol−1 (1 kcal mol−1 = 4.184 kJ mol−1) (iodo­benzene–formaldehyde; I(...)O = 3.2 Å and I(...)O—C = 110°), of the same magnitude as those for C—H(...)O hydrogen bonds (Riley & Merz, 2007 [triangle]). The observed inter­actions in (I) and (III) are consistent in geometry with these calculated strong inter­actions.

Figure 5
The zigzag chains formed along the b axis for (I). Dashed lines indicate the I(...)O inter­actions. [Symmetry codes: (A) −x + 2, y − An external file that holds a picture, illustration, etc.
Object name is c-65-0m431-efi1.jpg, −z + An external file that holds a picture, illustration, etc.
Object name is c-65-0m431-efi2.jpg; (B) x, y − 1, ...

According to a systematic CSD analysis (Allen et al., 1998 [triangle]) of inter­actions between ketonic (C2—C=O) carbonyl groups, three types of inter­action motifs were identified: a predominant slightly sheared anti­parallel motif, a perpendicular motif, and a highly sheared parallel motif. For transition metal carbonyls, a higher percentage of the perpendicular motif has been reported (Allen et al., 2006 [triangle]). Compounds (II) and (IV) contain strong attractive anti­parallel inter­molecular π(CO)–π(CO) inter­actions between the carbonyl groups of neighboring mol­ecules [O2(...)C8A(2 − x, −y, z) = 3.138 (2) Å, C8—O2(...)C8A = 105.00 (10)° for (II), and O2(...)C8A(2 − x, −y, z) = 3.211 (6) Å and C8—O2(...)C8A = 101.8 (3)° for (IV)], forming pairwise inter­actions in a sheared anti­parallel dimer motif along the crystallographic b axis (Fig. 6 [triangle]). These anti­parallel π(CO)–π(CO) inter­actions are a driving force for the formation of zigzag chains along the b axis. Comparison of the parameters obtained for (II) and (IV) with distances and angles reported for similar inter­actions in other transition metal carbonyls (2.95–3.60 Å/80–135°) indicates that the π(CO)–π(CO) inter­actions are relatively strong in (II) and (IV) (Allen et al., 2006 [triangle]). Also, inter­molecular π(CO)–π(CO) inter­actions are not rare, and sheared anti­parallel and perpendicular motifs can be found for 14 of the 89 hits for monosubstituted cymantrenes and for 3 of the 27 hits for (η5-C5H4 X)Re(CO)3 compounds in the CSD search (see above). The mean van der Waals radii used to identify inter­molecular inter­actions and contacts were taken as C = 1.53 Å, O = 1.42 Å and I = 2.04 Å (Bondi, 1964 [triangle]).

Figure 6
The zigzag chains formed along the b axis for (II). Dashed lines indicate the π(CO)–π(CO) inter­actions. [Symmetry codes: (A) −x + 2, −y, z; (B) −x + 2, − ...

The zigzag chains in (II) and (IV) are bound to each other by weak π(Csp 2)–π(Csp 2) and π(Csp 2)–π(Csp) stacking inter­actions between pairs of inversion-related mol­ecules (C(...)C distances ca 3.4 Å), leading to a ladder-type packing (Fig. 7 [triangle]).

Figure 7
The π(Csp 2)–π(Csp) stacking inter­actions (dashed lines) between pairs of mol­ecules in (II). [Symmetry codes: (A) −x + 2, −y + 1, −z; (B) ...

Experimental

Compounds (I)–(IV) were prepared according to the standard literature procedure of Sterzo et al. (1989 [triangle]). Crystals of (I) and (III) were obtained by slow evaporation of hexane solutions. Crystals of (II) and (IV) were grown by slow evaporation of chloro­form solutions at room temperature.

Compound (I)

Crystal data

  • [Mn(C5H4I)(CO)3]
  • M r = 329.95
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is c-65-0m431-efi5.jpg
  • a = 7.2696 (5) Å
  • b = 10.7776 (7) Å
  • c = 12.0288 (8) Å
  • V = 942.44 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.64 mm−1
  • T = 100 K
  • 0.20 × 0.15 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.427, T max = 0.717
  • 9507 measured reflections
  • 2278 independent reflections
  • 2161 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020
  • wR(F 2) = 0.048
  • S = 1.06
  • 2278 reflections
  • 118 parameters
  • H-atom parameters constrained
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.38 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with 948 Friedel pairs
  • Flack parameter: 0.05 (3)

Compound (II)

Crystal data

  • [Mn2(C12H8)(CO)6]
  • M r = 430.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is c-65-0m431-efi6.jpg
  • a = 6.4096 (10) Å
  • b = 10.9991 (16) Å
  • c = 11.9798 (18) Å
  • β = 100.507 (2)°
  • V = 830.4 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.55 mm−1
  • T = 100 K
  • 0.31 × 0.11 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.645, T max = 0.860
  • 12974 measured reflections
  • 2552 independent reflections
  • 2211 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.071
  • S = 1.05
  • 2552 reflections
  • 118 parameters
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.24 e Å−3

Compound (III)

Crystal data

  • [Re(C5H4I)(CO)3]
  • M r = 461.21
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is c-65-0m431-efi5.jpg
  • a = 7.4117 (14) Å
  • b = 10.922 (2) Å
  • c = 11.987 (2) Å
  • V = 970.3 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 15.67 mm−1
  • T = 100 K
  • 0.14 × 0.10 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.218, T max = 0.407
  • 9533 measured reflections
  • 2342 independent reflections
  • 2276 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018
  • wR(F 2) = 0.041
  • S = 0.99
  • 2342 reflections
  • 118 parameters
  • H-atom parameters constrained
  • Δρmax = 1.60 e Å−3
  • Δρmin = −1.39 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with 970 Friedel pairs
  • Flack parameter: 0.015 (7)

Compound (IV)

Crystal data

  • [Re2(C12H8)(CO)6]
  • M r = 692.64
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is c-65-0m431-efi6.jpg
  • a = 6.2633 (10) Å
  • b = 11.7262 (18) Å
  • c = 11.8471 (18) Å
  • β = 98.206 (2)°
  • V = 861.2 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 14.08 mm−1
  • T = 100 K
  • 0.20 × 0.11 × 0.09 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.165, T max = 0.364
  • 8399 measured reflections
  • 2068 independent reflections
  • 1817 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.051
  • S = 1.02
  • 2068 reflections
  • 118 parameters
  • H-atom parameters constrained
  • Δρmax = 1.48 e Å−3
  • Δρmin = −0.80 e Å−3

All H atoms were positioned geometrically, with C—H = 1.00 Å, and included in riding mode, with U iso(H) = 1.2U eq(C).

For all compounds, data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I, II, III, IV. DOI: 10.1107/S0108270109035902/sq3211sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S0108270109035902/sq3211Isup2.hkl

Structure factors: contains datablocks II. DOI: 10.1107/S0108270109035902/sq3211IIsup3.hkl

Structure factors: contains datablocks III. DOI: 10.1107/S0108270109035902/sq3211IIIsup4.hkl

Structure factors: contains datablocks IV. DOI: 10.1107/S0108270109035902/sq3211IVsup5.hkl

Acknowledgments

The authors are grateful to the NIH for support via the RIMI program (grant No. P20MD001104) and to the NSF for support via grant Nos. CHE-0832622, DMR-0120967 and DMR-0934212.

Footnotes

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ3211). Services for accessing these data are described at the back of the journal.

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.
  • Allen, F. H., Sparkes, H. A., Raithby, P. R., Gregory, E. C., Shields, P. & Chisholm, J. A. (2006). CrystEngComm, 8, 563–570.
  • Astruc, D., Ornelas, C. & Ruiz, J. (2008). Acc. Chem. Res.41, 841–856. [PubMed]
  • Barlow, S. & O’Hare, D. (1997). Chem. Rev.97, 637–669. [PubMed]
  • Bondi, A. (1964). J. Phys. Chem.68, 441–451.
  • Bruker (2001). SAINT-Plus Version 6.2. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 Version 1.27. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cowie, J., Hamilton, E. J. M., Laurie, J. C. V. & Welch, A. J. (1990). J. Organomet. Chem.394, 1–13.
  • Diederich, F. & Rubin, Y. (1992). Angew. Chem. Int. Ed. Engl.31, 1101–1123.
  • Dodge, R. P. & Schomaker, V. (1965). Acta Cryst.18, 614–617.
  • Elschenbroich, C., Schiemann, O., Burghaus, O. & Harms, K. (2005). Chem. Commun pp. 2149–2151. [PubMed]
  • Fitzpatrick, P. J., Le Page, Y. & Butler, I. S. (1981). Acta Cryst. B37, 1052–1058.
  • Fitzpatrick, P. J., Le Page, Y., Sedman, J. & Butler, I. S. (1981). Inorg. Chem.20, 2852–2861.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hall, M. B., Hillier, I. H., Connor, J. A., Guest, M. F. & Lloyd, D. R. (1975). Mol. Phys.30, 839–845.
  • Kaszynski, P., Friedli, A. C. & Michl, J. (1992). J. Am. Chem. Soc.114, 601–620.
  • Kinnibrugh, T. L., Salman, S., Getmanenko, Yu. A., Coropceanu, V., Porter, W. W. III, Timofeeva, T. V., Matzger, A. J., Bredas, J. L., Marder, S. R. & Barlow, S. (2009). Organometallics, 28, 1350–1357. [PMC free article] [PubMed]
  • Lommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. M. (1996). J. Am. Chem. Soc.118, 3108–3116.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Ramasubbu, N., Parthasarathy, R. & Murray-Rust, P. (1986). J. Am. Chem. Soc.108, 4308–4314.
  • Rees, B. & Coppens, P. (1973). Acta Cryst. B29, 2516–2528.
  • Riley, K. E. & Merz, K. M. Jr (2007). J. Phys. Chem. A, 111, 1688–1694. [PubMed]
  • Sheldrick, G. M. (2003). SADABS Version 2.03. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sterzo, C. L., Miller, M. M. & Stille, J. K. (1989). Organometallics, 8, 2331–2337.
  • Stulgies, B., Prinz, P., Magull, J., Rauch, K., Meindl, K., Ruhl, S. & de Meijere, A. (2005). Chem. Eur. J.11, 308–320. [PubMed]
  • Tamm, M., Bannenberg, T., Baum, K., Fröhlich, R., Steiner, T., Meyer-Friedrichsen, T. & Heck, J. (2000). Eur. J. Inorg. Chem.6, 1161–1169.
  • Tomalia, D. A., Naylor, A. M. & Goddard, W. A. (1990). Angew. Chem. Int. Ed. Engl.29, 138–175.

Articles from Acta Crystallographica Section C: Crystal Structure Communications are provided here courtesy of International Union of Crystallography