PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of bmcgenoBioMed Centralsearchsubmit a manuscriptregisterthis articleBMC Genomics
 
BMC Genomics. 2009; 10: 472.
Published online Oct 14, 2009. doi:  10.1186/1471-2164-10-472
PMCID: PMC2768749
Epigenetic regulation of the honey bee transcriptome: unravelling the nature of methylated genes
Sylvain Foret,1 Robert Kucharski,2 Yvonne Pittelkow,1 Gabrielle A Lockett,2 and Ryszard Maleszkacorresponding author2
1Centre for Bioinformation, Mathematical Sciences Institute, The Australian National University, Canberra ACT 0200, Australia
2Research School of Biology, The Australian National University, Canberra ACT 0200, Australia
corresponding authorCorresponding author.
Sylvain Foret: Sylvain.Foret/at/anu.edu.au; Robert Kucharski: kucharski/at/rsbs.anu.edu.au; Yvonne Pittelkow: Pittelkow/at/anu.edu.au; Gabrielle A Lockett: Lockett/at/anu.edu.au; Ryszard Maleszka: Ryszard.Maleszka/at/anu.edu.au
Received April 22, 2009; Accepted October 14, 2009.
Abstract
Background
Epigenetic modification of DNA via methylation is one of the key inventions in eukaryotic evolution. It provides a source for the switching of gene activities, the maintenance of stable phenotypes and the integration of environmental and genomic signals. Although this process is widespread among eukaryotes, both the patterns of methylation and their relevant biological roles not only vary noticeably in different lineages, but often are poorly understood. In addition, the evolutionary origins of DNA methylation in multicellular organisms remain enigmatic. Here we used a new 'epigenetic' model, the social honey bee Apis mellifera, to gain insights into the significance of methylated genes.
Results
We combined microarray profiling of several tissues with genome-scale bioinformatics and bisulfite sequencing of selected genes to study the honey bee methylome. We find that around 35% of the annotated honey bee genes are expected to be methylated at the CpG dinucleotides by a highly conserved DNA methylation system. We show that one unifying feature of the methylated genes in this species is their broad pattern of expression and the associated 'housekeeping' roles. In contrast, genes involved in more stringently regulated spatial or temporal functions are predicted to be un-methylated.
Conclusion
Our data suggest that honey bees use CpG methylation of intragenic regions as an epigenetic mechanism to control the levels of activity of the genes that are broadly expressed and might be needed for conserved core biological processes in virtually every type of cell. We discuss the implications of our findings for genome-scale regulatory network structures and the evolution of the role(s) of DNA methylation in eukaryotes. Our findings are particularly important in the context of the emerging evidence that environmental factors can influence the epigenetic settings of some genes and lead to serious metabolic and behavioural disorders.
Articles from BMC Genomics are provided here courtesy of
BioMed Central