PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of aapsjspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
 
AAPS J. 2006 March; 8(1): E153–E159.
Published online 2006 March 10. doi:  10.1208/aapsj080118
PMCID: PMC2751434

Targeting opioid receptor heterodimers: Strategies for screening and drug development

Abstract

G-protein-coupled receptors are a major target for the development of new marketable drugs. A growing number of studies have shown that these receptors could bind to their ligands, signal, and be internalized as dimers. Most of the evidence comes from in vitro studies, but recent studies using animal models support an important role for dimerization in vivo and in human pathologies. It is therefore becoming highly relevant to include dimerization in screening campaigns: the increased complexity reached by the ability to target 2 receptors should lead to the identification of more specific hits that could be developed into drugs with fewer side effects. In this review, we have summarized results from a series of studies characterizing the properties of G-protein-coupled receptor dimers using both in vitro and in vivo systems. Since opioid receptors exist as dimers and heterodimerization modulates their pharmacology, we have used them as a model system to develop strategies for the identification of compounds that will specifically bind and activate opioid receptor heterodimers: such compounds could represent the next generation of pain relievers with decreased side effects, including reduced drug abuse liability.

Full Text

The Full Text of this article is available as a PDF (245K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Kieffer BL. Recent advances in molecular recognition and signal transduction of active peptides: receptors for opioid peptides. Cell Mol Neurobiol. 1995;15:615–635. doi: 10.1007/BF02071128. [PubMed] [Cross Ref]
2. George SR, O'Dowd BF, Lee SP. G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov. 2002;1:808–820. doi: 10.1038/nrd913. [PubMed] [Cross Ref]
3. Maggio R, Vogel Z, Wess J. Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular “cross-talk” between G-protein linked-receptors. Proc Natl Acad Sci USA. 1993;90:3103–3107. doi: 10.1073/pnas.90.7.3103. [PubMed] [Cross Ref]
4. Rios CD, Jordan BA, Gomes I, Devi LA. G-protein receptor dimerization: modulation of receptor function. Pharmacol Ther. 2001;92:71–87. doi: 10.1016/S0163-7258(01)00160-7. [PubMed] [Cross Ref]
5. Angers S, Salahpour A, Bouvier M. Dimerization: an emerging concept for G-protein coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol. 2002;42:409–435. doi: 10.1146/annurev.pharmtox.42.091701.082314. [PubMed] [Cross Ref]
6. Bai M. Dimerization of G-protein coupled receptors: roles in signal transduction. Cell Signal. 2004;16:175–186. doi: 10.1016/S0898-6568(03)00128-1. [PubMed] [Cross Ref]
7. Kroeger KM, Pfleger KD, Eidne KA. G-protein coupled receptor oligomerization in neuroendocrine pathways. Front Neuroendocrinol. 2003;24:254–278. doi: 10.1016/j.yfrne.2003.10.002. [PubMed] [Cross Ref]
8. Marshall FH, Jones KA, Kaupman K, Bettler B. GABA(B) receptors: the first 7TM heterodimers. Trends Pharmacol Sci. 1999;20:396–399. doi: 10.1016/S0165-6147(99)01383-8. [PubMed] [Cross Ref]
9. Gomes I, Devi LA. Receptor-receptor interactions modulate opioid receptor function. In: Madras BH, Colvis CM, Pollock D, Rutter JL, Shurtleff D, Von Zastrow M, editors. Cell Biology of Addiction. New York, NY: Cold Spring Harbor Laboratory Press; 2005.
10. Bouvier M. Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci. 2001;2:274–286. doi: 10.1038/35067575. [PubMed] [Cross Ref]
11. Jordan BA, Devi LA. G-protein coupled receptor heterodimerization modulates receptor function. Nature. 1999;399:697–700. doi: 10.1038/21441. [PMC free article] [PubMed] [Cross Ref]
12. Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA. Heterodimerization of mu and delta opioid receptors: a role in opiate synergy. J Neurosci. 2000;20:RC110–RC110. [PMC free article] [PubMed]
13. George SR, Fan T, Xie Z, et al. Oligomerization of mu and delta opioid receptors: generation of novel functional properties. J Biol Chem. 2000;275:26128–26135. doi: 10.1074/jbc.M000345200. [PubMed] [Cross Ref]
14. Gomes I, Gupta A, Filipovska J, Szeto HH, Pintar JE, Devi LA. A role for heterodimerization of μ and δ opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci USA. 2004;101:5135–5139. doi: 10.1073/pnas.0307601101. [PubMed] [Cross Ref]
15. Pfeiffer M, Koch T, Schroder H, Laugsch M, Hollt V, Schulz S. Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. J Biol Chem. 2002;277:19762–19772. doi: 10.1074/jbc.M110373200. [PubMed] [Cross Ref]
16. Jordan BA, Gomes I, Rios C, Filipovska J, Devi LA. Functional interactions between μ opioid and α2A-adrenergic receptors. Mol Pharmacol. 2003;64:1317–1324. doi: 10.1124/mol.64.6.1317. [PubMed] [Cross Ref]
17. Rios C, Gomes I, Devi LA. Interactions between delta opioid receptors and alpha-adrenoceptors. Clin Exp Pharmacol Physiol. 2004;31:833–836. doi: 10.1111/j.1440-1681.2004.04076.x. [PubMed] [Cross Ref]
18. Pfeiffer M, Kirscht S, Stumm R, et al. Heterodimerization of substance P and mu-opioid receptors regulates receptor trafficking and resensitization. J Biol Chem. 2003;278:51630–51637. doi: 10.1074/jbc.M307095200. [PubMed] [Cross Ref]
19. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K. Atomic-force microscopy: rhodopsin dimmers in native disc membranes. Nature. 2003;421:127–128. doi: 10.1038/421127a. [PubMed] [Cross Ref]
20. AbdAlla S, Lother H, Quitterer U. AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature. 2000;407:91–98.
21. Abdalla S, Lother H, el Massiery A, Quitterer U. Increased AT(1) receptor hetero dimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat Med. 2001;7:1003–1009. doi: 10.1038/nm0901-1003. [PubMed] [Cross Ref]
22. Abdalla S, Lother H, Langer A, el Faramawy Y, Quitterer U. Factor XIIIA transglutaminase crosslinks AT1 receptor dimers of monocytes at the onset of atherosclerosis. Cell. 2004;119:343–354. doi: 10.1016/j.cell.2004.10.006. [PubMed] [Cross Ref]
23. Murtra P, Sheasby AM, Hunt SP, De Felipe C. Rewarding effects of opiates are absent in mice lacking the receptor for substance P. Nature. 2000;405:180–183. doi: 10.1038/35012069. [PubMed] [Cross Ref]
24. King T, Gardell LR, Wang R, et al. Role of NK-1 neurotransmission in opioid-induced hyperalgesia. Pain. 2005;116:276–288. doi: 10.1016/j.pain.2005.04.014. [PMC free article] [PubMed] [Cross Ref]
25. Hunyady L, Vauquelin G, Vanderheyden P. Agonist induction and conformational selection during activation of a G-protein-coupled receptor. Trends Pharmacol Sci. 2003;24:81–86. doi: 10.1016/S0165-6147(02)00050-0. [PubMed] [Cross Ref]
26. Cherfils J, Chabre M. Activation of G-protein Galpha subunits by receptors through Galpha-Gbeta and Galpha-Ggamma interactions. Trends Biochem Sci. 2003;28:13–17. doi: 10.1016/S0968-0004(02)00006-3. [PubMed] [Cross Ref]
27. Urwyler S, Pozza MF, Lingenhoehl K, et al. N,N′-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) and structurally related compounds: novel allosteric enhancers of gamma-aminobutyric acidB receptor function. J Pharmacol Exp Ther. 2003;307:322–330. doi: 10.1124/jpet.103.053074. [PubMed] [Cross Ref]
28. Cryan JF, Kaupmann K. Don't worry ‘B’ happy!: a role for GABA(B) receptors in anxiety and depression. Trends Pharmacol Sci. 2005;26:36–43. doi: 10.1016/j.tips.2004.11.004. [PubMed] [Cross Ref]
29. Binet V, Brajon C, Le Corre L, Acher F, Pin JP, Prezeau L. The heptahelical domain of GABA(B2) is activated directly by CGP7930 a positive allosteric modulator of the GABA(B) receptor. J Biol Chem. 2004;279:29085–29091. doi: 10.1074/jbc.M400930200. [PMC free article] [PubMed] [Cross Ref]
30. Cryan JF, Kelly PH, Chaperon F, et al. Behavioral characterization of the novel GABAB receptor-positive modulator GS39783 (N,N′-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine): anxiolytic-like activity without side effects associated with baclofen or benzodiazepines. J Pharmacol Exp Ther. 2004;310:952–963. doi: 10.1124/jpet.104.066753. [PubMed] [Cross Ref]
31. Knoflach F, Mutel V, Jolidon S, et al. Positive allosteric modulators of metabotropic glutamate 1 receptor: characterization, mechanism of action, and binding site. Proc Natl Acad Sci USA. 2001;98:13402–13407. doi: 10.1073/pnas.231358298. [PubMed] [Cross Ref]
32. Conigrave AD, Franks AH. Allosteric activation of plasma membrane receptors: physiological implications and structural origins. Prog Biophys Mol Biol. 2003;81:219–240. doi: 10.1016/S0079-6107(03)00020-8. [PubMed] [Cross Ref]
33. Suzuki Y, Moriyoshi E, Tsuchiya D, Jingami H. Negative cooperativity of glutamate binding in the dimeric metabotropic glutamate receptor subtype I. J Biol Chem. 2004;279:35526–35534. doi: 10.1074/jbc.M404831200. [PubMed] [Cross Ref]
34. Gao ZG, Kim SG, Soltysiak KA, Melman N, Ijzerman AP, Jacobson KA. Selective allosteric enhancement of agonist binding and function at human A3 adenosine receptors by a series of imidazoquinoline derivatives. Mol Pharmacol. 2002;62:81–89. doi: 10.1124/mol.62.1.81. [PMC free article] [PubMed] [Cross Ref]
35. Trankle C, Weyand O, Voigtlander U, et al. Interactions of orthosteric and allosteric ligands with [3H]dimethyl-W84 at the common allosteric site of muscarinic M2 receptors. Mol Pharmacol. 2003;64:180–190. doi: 10.1124/mol.64.1.180. [PubMed] [Cross Ref]
36. Gille A, Seifert R. Low-affinity interactions of BODIPY-FL-GTPgammaS and BODIPY-FL-GppNHp with G(i)- and G(s)-proteins. Naunyn Schmiedebergs Arch Pharmacol. 2003;368:210–215. doi: 10.1007/s00210-003-0783-7. [PubMed] [Cross Ref]
37. Lembo PM, Grazzini E, Groblewski T, et al. Proenkephalin A gene products activate a new family of sensory neuron-specific GPCRs. Nat Neurosci. 2002;5:201–209. doi: 10.1038/nn815. [PubMed] [Cross Ref]
38. Cacace A, Banks M, Spicer T, Civoli F, Watson J. An ultra-HTS process for the identification of small molecule modulators of orphan G-protein-coupled receptors. Drug Discov Today. 2003;8:785–792. doi: 10.1016/S1359-6446(03)02809-5. [PubMed] [Cross Ref]
39. Chen L, Zou S, Lou X, Kang HG. Different stimulatory opioid effects on intracellular Ca(2+) in SH-SY5Y cells. Brain Res. 2000;882:256–265. doi: 10.1016/S0006-8993(00)02904-8. [PubMed] [Cross Ref]
40. Yoon SH, Lo TM, Loh HH, Thayer SA. Delta-opioid-induced liberation of Gbetagamma mobilizes Ca2+ stores in NG108-15 cells. Mol Pharmacol. 1999;56:902–908. [PubMed]
41. Charles AC, Mostovskaya N, Asas K, Evans CJ, Dankovich ML, Hales TG. Coexpression of delta-opioid receptors with micro receptors in GH3 cells changes the functional response to micro agonists from inhibitory to excitatory. Mol Pharmacol. 2003;63:89–95. doi: 10.1124/mol.63.1.89. [PubMed] [Cross Ref]
42. Waldhoer M, Bartlett SE, Whistler JL. Opioid receptors. Annu Rev Biochem. 2004;73:953–990. doi: 10.1146/annurev.biochem.73.011303.073940. [PubMed] [Cross Ref]
43. Schiller PW, Weltrowska G, Berezowska I, et al. The TIPP opioid peptide family: development of delta antagonists, delta agonists, and mixed mu agonist/delta antagonists. Biopolymers. 1999;51:411–425. doi: 10.1002/(SICI)1097-0282(1999)51:6<411::AID-BIP4>3.0.CO;2-Z. [PubMed] [Cross Ref]
44. Bryant SD, Salvadori S, Cooper PS, Lazarus LH. New delta-opioid antagonists as pharmacological probes. Trends Pharmacol Sci. 1998;19:42–46. doi: 10.1016/S0165-6147(97)01156-5. [PubMed] [Cross Ref]
45. Durocher Y, Perret S, Thibaudeau E, et al. A reporter gene assay for high-throughput screening of G-protein-coupled receptors stably or transiently expressed in HEK293 EBNA cells grown in suspension culture. Anal Biochem. 2000;284:316–326. doi: 10.1006/abio.2000.4698. [PubMed] [Cross Ref]
46. Waldhoer M, Fong J, Jones RM, et al. A heterodimer-selective agonist shows in vivo releavance of G protein-coupled receptor dimers. Proc Natl Acad Sci USA. 2005;102:9050–9055. doi: 10.1073/pnas.0501112102. [PubMed] [Cross Ref]
47. Mesnier D, Baneres JL. Cooperative conformational changes in a G-protein-coupled receptor dimer, the leukotriene B(4) receptor BLT1. J Biol Chem. 2004;279:49664–49670. doi: 10.1074/jbc.M404941200. [PubMed] [Cross Ref]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists