PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of aapsjspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
 
AAPS J. 2006 December; 8(4): E682–E692.
Published online 2006 November 10. doi:  10.1208/aapsj080478
PMCID: PMC2751365

Vesicular monoamine transporter 2: Role as a novel target for drug development

Abstract

In the central nervous, system, vesicular monoamine transporter 2 (VMAT2) is the only transporter that moves cytoplasmic dopamine (DA) into synaptic vesicles for storage and subsequent exocytotic release. Pharmacologically enhancing DA sequenstration by VMAT2, and thus preventing the oxidation of DA in the cytoplasm, may be a strategy for treating diseases such as Parkinson's disease. VMAT2 may also be a novel target for the development of treatments for psychostimulant abuse. This review summarizes the possible role of VMAT2 as a therapeutic target, VMAT2 ligands reported in the literature, and the structure-activity relationship of these ligands, including tetrabenazine analogs, ketanserin analogs, lobeline analogs, and 3-amine-2-phenylpropene analogs. The molecular structure of VMAT2 and its relevance to ligand binding are briefly discussed.

Full Text

The Full Text of this article is available as a PDF (284K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Yelin R, Schuldiner S. Vesicular neurotransmitter transporters: pharmacology, biochemistry, and molecular analysis. In: Reith MEA, editor. Neurotransmitter Transporters: Structure, Function, and Regulation. Totowa, NJ: Humana Press; 2002. pp. 313–354.
2. Erickson JD, Eiden LE, Hoffiman BJ. Expression cloning of a reserpine-sensitive vesicular monoamine transporter. Proc Natl Acad Sci USA. 1992;89:10993–10997. [PubMed]
3. Lin Y, Peter D, Roghani A, et al. A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell. 1992;70:539–551. [PubMed]
4. Erickson J, Eiden L. Functional identification and molecular cloning of a human brain vesicle monoamine transporter. J Neurochem. 1993;61:2314–2317. [PubMed]
5. Erickson JD, Schaefer MKH, Bonner TI, Eiden LE, Weihe E. Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci USA. 1996;93:5166–5171. [PubMed]
6. Peter D, Liu Y, Sternini C, de Giorgio R, Brecha N, Edwards RH. Differential expression of two vesicular monoamine transporters. J Neurosci. 1995;15:6179–6188. [PubMed]
7. Weihe E, Schafer MK, Erickson JD, Eiden LE. Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. J Mol Neurosci. 1994;5:149–164. [PubMed]
8. Hansson SR, Mezey E, Hoffman BJ. Ontogeny of vesicular monoamine transporter mRNAs VMAT1 and VMAT2, II: expression in neural creast derivatives and their target sites in the rat. Brain Res Dev Brain Res. 1998;110:159–174. [PubMed]
9. Peter D, Jimenez J, Lin Y, Kim J, Edwards RH. The chromaffin granule and synaptic vesicle amine transporters differ in substrate recognition and sensitivity to inhibitors. J Biol Chem. 1994;269:7231–7237. [PubMed]
10. Pletscher A. Effect of neuroleptics and other drugs on monoamine uptake by membranes of adrenal chromaffin granules. Br J Pharmacol. 1977;59:419–424. [PMC free article] [PubMed]
11. Scherman D, Henry JP. Reserpine binding to bovine chromaffin granule membranes. Mol Pharmacol. 1984;25:113–122. [PubMed]
12. Darchen F, Scherman D, Henry JP. Reserpine binding to chromaffin granules suggests the existence of two conformations of the monoamine transporter. Biochemistry. 1989;28:1692–1697. [PubMed]
13. Henry JP, Scherman D. Radioligands of the vesicular monoamine transporter and their use as markers of monoamine storage vesicles. Biochem Pharmacol. 1989;38:2395–2404. [PubMed]
14. Scherman D, Jaudon P, Henry JP. Characterization of the monoamine carrier of chromaffin granule membrane by binding of [2–3H]dihydrotetrabenazine. Proc Natl Acad Sci USA. 1983;80:584–588. [PubMed]
15. Cohen G, Kesler N. Monoamine oxidase and mitochondrial respiration. J Neurochem. 1999;73:2310–2315. [PubMed]
16. Lin Y, Edwards RH. The role of vesicular transport proteins in synaptic transmission and neural degeneration. Annu Rev Neurosci. 1997;20:125–156. [PubMed]
17. Langston JW. The etiology of Parkinson's disease with emphasis on the MPTP story. Neurology. 1996;47:S153–S160. [PubMed]
18. Snyder SH, D'Amato RJ. MPTP: a neurotoxin relevant to the pathophysiology of Parkinson's disease. Neurology. 1986;36:250–258. [PubMed]
19. Jenner P, Schapira AHV, Marsden CD. New insights into the cause of Parkinson's disease. Neurology. 1992;42:2241–2250. [PubMed]
20. Jenner P, Dexter DT, Sian J, Schapira AHV, Marsden CD. Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease. Ann Neurol. 1992;32:S82–S87. [PubMed]
21. German DC, Sonsalla PK. A role for the vesicular monoamine transporter (VMAT2) in Parkinson's disease. Adv Behav Biol. 2003;54:131–137.
22. Adams JD, Chang ML, Klaidman L. Parkinson's disease—redox mechanisms. Curr Med Chem. 2001;8:809–814. [PubMed]
23. Scherman D, Darchen F, Desnos C, Henry JP. 1-Methyl-4-phenylpyridinium is a substrate of the vesicular monoamine uptake system of chromaffin granules. Eur J Pharmacol. 1988;146:359–360. [PubMed]
24. Daniels AJ, Reinhard JF. Energy-driven uptake of the neurotoxin 1-methyl-4-phenylpyridine into chromaffin granules via the catecholamine transporter. J Biol Chem. 1988;263:5034–5036. [PubMed]
25. Darchen F, Scherman D, Henry JP. Characteristics of the transport of quaternary ammonium 1-methyl-4-phenylpyridine by chromaffin granules. Biochem Pharmacol. 1988;37:4381–4387. [PubMed]
26. Del Zompo M, Piccardi MP, Ruiu S, Quartu M, Gessa GL, Vaccari A. Selective MMP+ uptake into synaptic dopamine vesicles: possible involvement in MPTP neurotoxicity. Br J Pharmacol. 1993;109:411–414. [PMC free article] [PubMed]
27. Moriyama Y, Amakatsu K, Futai M. Uptake of the neurotoxin, 4-methylphenylpyridinium, into chromaffin granules and synpatic vesicles: a proton gradient, drives its uptake through monoamine transporter. Arch Biochem Biophys. 1993;305:271–277. [PubMed]
28. Takahashi N, Miner LL, Sora I, et al. VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc Natl Acad Sci USA. 1997;94:9938–9943. [PubMed]
29. Speciale SG, Liang CL, Sonsalla PK, Edwards RH, German DC. The neurotoxin 1-methyl-4-phenylpyridinium is sequestered within neurons that contain the vesicular monoamine transporter. Neuroscience. 1998;84:1177–1185. [PubMed]
30. Gainetdinov RR, Fumagalli F, Wang YM, et al. Increased MPTP neurotoxicity in vesicular monoamine transporter 2 heterozygote knockout mice. J Neurochem. 1998;70:1973–1978. [PubMed]
31. German DC, Liang CL, Manaye KF, Lane K, Sonsalla PK. Pharmacological inactivation of the vesicular monoamine transporter can enhance 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration of midbrain dopaminergic, neurons, but not locus coeruleus noradrenergic neurons. Neuroscience. 2000;101:1063–1069. [PubMed]
32. Staal RGW, Sonsalla PK. Inhibition of brain vesicular monoamine transporter (VMAT2) enhances 1-methyl-4-phenylpyridinium neurotoxicity in vivo in rat striata. J Pharmacol Exp Ther. 2000;293:336–342. [PubMed]
33. Mooslehner KA, Chan PM, Xu W, et al. Mice with very low expression of the vesicular monoamine transporter 2 gene survive into adulthood: potential mouse model for parkinsonism. Mol Cell Biol. 2001;21:5321–5331. [PMC free article] [PubMed]
34. Fumagalli F, Gainetdinov RR, Wang YM, Valenzano KJ, Miller GW, Caron MG. Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. J Neurosci. 1999;19:2424–2431. [PubMed]
35. Kariya S, Takahashi N, Hirano M, Ueno S. Increased vulnerability to L-DOPA toxicity in dopaminergic neurons from VMAT2 heterozygote knockout mice. J Mol Neurosci. 2005;27:277–280. [PubMed]
36. Glatt CE, Wahner AD, White DJ, Ruiz-Linares A, Ritz B. Gain-of-function haplotypes in the vesicular monoamine transporter prom oter are protective for Parkinson disease in women. Hum Mol Genet. 2005;15:299–305. [PMC free article] [PubMed]
37. Sandoval V, Riddle EL, Hanson GR, Fleckenstein AE. Methylphenidate alters vesicular monoamine transport and prevents methamphetamine-induced dopaminergic deficits. J Pharmacol Exp Ther. 2002;304:1181–1187. [PubMed]
38. Hanson GR, Sandoval V, Riddle E, Fleckenstein AE. Psychostimulants and vesicle trafficking: a novel mechanism and therapeutic implications. Ann NY Acad Sci. 2004;1025:146–150. [PubMed]
39. Hall ED, Andrus PK, Oostveen JA, Althaus JS, Von Voigtlander PF. Neuroprotective effects of the dopamine D2/D3 agonist pramipexole against postischemic or methamphetamine-induced degeneration of nigrostriatal neurons. Brain Res. 1996;742:80–88. [PubMed]
40. Sethy VH, Wu H, Oostveen JA, Hall ED. Neuroprotective effects of the dopamine agonist pramipexole and bromocriptine in 3-acetylpyridine-treated rats. Brain Res. 1997;754:181–186. [PubMed]
41. Truong JG, Rau KS, Hanson GR, Fleckenstein AE. Pramipexole increases vesicular dopamine uptake: implications for treatment of Parkinson's neurodegeneration. Eur J Pharmacol. 2003;474:223–226. [PubMed]
42. Truong JG, Hanson GR, Fleckenstein AE. Apomorphine increases vesicular monoamine transporter-2 function: implications for neurodegeneration. Eur J Pharmacol. 2004;492:143–147. [PubMed]
43. Amara SG, Sonders MS. Neurotransmitter transporters as molecular targets for addictive drugs. Drug Alcohol Depend. 1998;51:87–96. [PubMed]
44. Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychol Rev. 1987;94:469–492. [PubMed]
45. Koob GF. Neural mechanisms of drug reinforcement. Ann N Y Acad Sci. 1992;654:171–191. [PubMed]
46. Fleckenstein AE, Hanson GR. Impact of psychostimulants on vesicular monoamine transporter function. Eur J Pharmacol. 2003;479:283–289. [PubMed]
47. Riddle EL, Fleckenstein AE, Hanson GR. Role of monoamine transporters in mediating psychostimulant effects. AAPS J. 2005;7:E847–E851. [PMC free article] [PubMed]
48. Brown JM, Hanson GR, Fleckenstein AE. Regulation of the vesicular monoamine transporter-2: a novel mechanism for cocaine and other psychostimulants. J Pharmacol Exp Ther. 2001;296:762–767. [PubMed]
49. Sulzer D, Maidment NT, Rayport S. Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J Neurochem. 1993;60:527–535. [PubMed]
50. Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci. 1995;15:4102–4108. [PubMed]
51. Johnson RG. Accumulation of biological amines into chromaffin granules: a model for hormone and neurotransmitter transport. Physiol Rev. 1988;68:232–307. [PubMed]
52. Sulzer D, Rayport S. Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: a mechanism of action. Neuron. 1990;5:797–808. [PubMed]
53. Brown JM, Hanson GR, Fleckenstein AE. Methamphetamine rapidly decreases vesicular dopamine uptake. J Neurochem. 2000;74:2221–2223. [PubMed]
54. Wang Y, Gainetdinov RR, Fumagalli F, et al. Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron. 1997;19:1285–1296. [PubMed]
55. Pletscher A, Brossi A, Gey KF. Benzoquinolizine derivatives: a new class of monoamine decreasing drugs with psychotropic action. Int Rev Neurobiol. 1962;4:275–306.
56. Pettibone DJ, Pflueger AB, Totaro JA. Tetrabenazine-induced depletion of brain monoamines: mechanism by which desmethylimipramine protects cortical norepinephrine. Eur J Pharmacol. 1984;102:431–436. [PubMed]
57. Brossi A, Lindlar H, Walter M, Schnider O. Synthesis in the emetine series, I: 2-oxohydrobenzo[a]quinolizines. Helv Chim Acta. 1958;41:1793–1806.
58. Kenney C, Jankovic J. Tetrabenazine in the treatment of hyperkinetic movement disorders. Expert Rev Neurother. 2006;6:7–17. [PubMed]
59. Huntington Study Group Tetrabenazine as antichorea therapy in Huntington disease. Neurology. 2006;66:366–372. [PubMed]
60. Jankovic J, Beach J. Long-term effects of tetrabenazine in hyperkinetic movement disorders. Neurology. 1997;48:358–362. [PubMed]
61. Reches A, Burke RE, Kuhn CM, Hassan MN, Jackson VR, Fahn S. Tetrabenazine, an amine-depleting drug, also blocks dopamine receptors in rat brain. J Pharmacol Exp Ther. 1983;225:515–521. [PubMed]
62. DaSilva JN, Kilbourn MR, Mangner TJ. Synthesis of [11C]tetrabenazine a vesicular monoamine uptake inhibitor, for PET imaging studies. Appl Radiat Isot. 1993;44:673–676. [PubMed]
63. Kilbourn MR, DaSilva JN, Frey KA, Koeppe RA, Kuhl DE. In vivo imaging of vesicular monoamine transporters in human brain using [11C]tetrabenazine and positron emission tomography. J Neurochem. 1993;60:2315–2318. [PubMed]
64. DaSilva JN, Kilbourn MR, Domino EF. In vivo imaging of monoaminergic nerve terminals in normal and MPTP-lesioned primate brain using positron emission tomography (PET) and [11C]tetrabenazine. Synapse. 1993;14:128–131. [PubMed]
65. DaSilva JN, Carey JE, Sherman PS, Pisani TJ, Kilbourn MR. Characterization of [11C]tetrabenazine as an in vivo radioligand for the vesicular monoamine transporter. Nucl Med Biol. 1994;21:151–156. [PubMed]
66. Kilbourn MR. PET radioligands for vesicular neurotransmitter transporters. Med Chem Res. 1994;5:113–126.
67. Schwartz DE, Bruderer H, Rieder J, Brossi A. Metabolic studies of tetrabenazine, a psychotropic drug in animals and man. Biochem Pharmacol. 1966;15:645–655. [PubMed]
68. Scherman D, Raisman R, Ploska A, Agid Y. [3H]Dihydrotetrabenazine, a new in vitro monoaminergic probe for human brain. J Neurochem. 1988;50:1131–1136. [PubMed]
69. Masuo Y, Pelaprat D, Scherman D, Rostene W. [3H]Dihydrotetrabenazine, a new marker for the visualization of dopaminergic denervation in the rat striatum. Neurosci Lett. 1990;114:45–50. [PubMed]
70. Zucker M, Weizman A, Rehavi M. Characterization of high-affinity [3H]TBZOH binding to the human platelet vesicular monoamine transporter. Life Sci. 2001;69:2311–2317. [PubMed]
71. Jewett DM, Kilbourn MR, Lee LC. A simple synthesis of[11C]dihydrotetrabenazine (DTBZ) Nucl Med Biol. 1997;24:197–199. [PubMed]
72. Koeppe RA, Frey KA, Kume A, Albin R, Kilbourn MR, Kuhl DE. Equilibrium versus compartmental analysis for assessment of the vesicular monoamine transporter using (+)-[11C]dihydrotetrabenazine (DTBZ) and positron emission tomography. J Cereb Blood Flow Metab. 1997;17:919–931. [PubMed]
73. DaSilva JN, Kilbourn MR, Mangner TJ. Synthesis of a [11C]methoxy derivative of alpha-dihydrotetrabenazine: a radioligand for studying the vesicular monoamine transporter. Appl Radiat Isot. 1993;44:1487–1489. [PubMed]
74. Kilbourn MR, Lee LC, Heeg MJ, Jewett DM. Absolute configuration of (+)-dihydrotetrabenazine, an active metabolite of tetrabenazine. Chirality. 1997;9:59–62. [PubMed]
75. Kilbourn MR, Lee L, Vander Borght T, Jewett D, Frey K. Binding of alpha-dihydrotetrabenazine to the vesicular monoamine transporter is stereospecific. Eur J Pharmacol. 1995;278:249–252. [PubMed]
76. Kilbourn MR, Lee LC, Jewett DM, Vander Borght TM, Koeppe RA, Frey KA. In vitro and in vivo binding of α-dihydrotetrabenazine to the vesicular monoamine transporters is stereospecific. J Cereb Blood Flow Metab. 1995;15:650–650.
77. Clarke I, Turtle R, Johnston G, inventors. Cambridge Laboratories Limited, UK, assignee. Preparation of dihydrotetrabenazines with affinity for monoamine transporters for use in pharmaceutical compositions for the treatment of hyperkinetic disorders. WO 2 005 077 946. February 11, 2005.
78. Tridgett R, Clarke I, Turtle R, Johnston G, inventors. Cambridge Laboratories Limited, UK, assignee. Preparation of dihydrotetrabenazine isomers for the treatment of hyperkinetic movement disorders. GB 2 410 947. February 11, 2004.
79. Vander Borght TM, Sima AAF, Kilbourn MR, Desmond TJ, Kuhl DE, Frey KA. [3H]Methoxytetrabenazine: a high specific activity ligand for estimating monoaminergic neuronal integrity. Neuroscience. 1995;68:955–962. [PubMed]
80. Vander Borght TM, Kilbourn MR, Koeppe RA, et al. In vivo imaging of the brain vesicular monoamine transporter. J Nucl Med. 1995;36:2252–2260. [PubMed]
81. Kilbourn MR, Sherman PS, Abbott LC. Mutant mouse strains as models for in vivo radiotracer evaluations: [11C]methoxytetrabenazine ([11C]MTBZ) in tottering mice. Nucl Med Biol. 1995;22:565–567. [PubMed]
82. F. Hoffmann-La Roche & Co inventor. F. Hoffmann-La Roche & Co, assignee. Substituted 2-hydroxy-1,2,3,4,6,7-hexahydrobenzo[a]quin olizines and their salts. GB 839 105. June 29, 1960.
83. F. Hoffmann-La Roche & Co. inventor. F. Hoffmann-La Roche & Co, assignee. Benzo[a]quinolizine derivatives. BE 633 559. December 13, 1963.
84. F. Hoffmann-La Roche & Co. inventor. F. Hoffmann-La Roche & Co, assignee. Substituted tetrahydrobenzo[a]quinolizines. BE 636 798. March 2, 1964.
85. Lee LC, Vander Borght T, Sherman PS, Frey KA, Kilbourn MR. In vitro and in vivo studies of benzoisoquinoline ligands for the brain synaptic vesicle monoamine transporter. J Med Chem. 1996;39:191–196. [PubMed]
86. Canney DJ, Guo YZ, Kung MP, Kung HF. Synthesis and preliminary evaluation of an iodovinyl-tetrabenazine analog as a marker for the vesicular monoamine transporter. J Labelled Compd Radiopharm. 1993;33:355–368.
87. Kung MP, Canney DJ, Frederick D, Zhuang Z, Billings JJ, Kung HF. Binding of 125I-iodovinyltetrabenazine to CNS vesicular monoamine transport sites. Synapse. 1994;18:225–232. [PubMed]
88. Clarke FH, Hill RT, Koo J, et al. A series of hexahydro[1,4]oxazino [3,4-a]isoquinolines as potential neuroleptics. J Med Chem. 1978;21:785–791. [PubMed]
89. Fahrenholtz KE, Capomaggi A, Lurie M, Goldberg MW, Kierstead RW. Octahydrophenanthrene analogs of tetrabenazine. J Med Chem. 1966;9:304–310. [PubMed]
90. Saner A, Pletscher A. A benzo[a]quinolizine derivative with a neuroleptic-like action on cerebral monoamine turnover. J Pharmacol Exp Ther. 1977;203:556–563. [PubMed]
91. Harnden MR, Short JH. 2-Thio-1,3,4,6,7,11b-hexahydro-9,10-dimethoxy-2H-benzo[a]quinolizines. J Med Chem. 1967;10:1183–1184. [PubMed]
92. Aranda G, Beaucourt JP, Ponchant M, Isambert MF, Henry JP. Synthesis and biological activity of iodinated and photosensitive derivatives of tetrabenazine. Eur J Med Chem. 1990;25:369–374.
93. Scherman D, Gasnier B, Jaudon P, Henry JP. Hydrophobicity of the tetrabenazine-binding site of the chromaffin granule monoamine transporter. Mol Pharmacol. 1988;33:72–77. [PubMed]
94. Canney DJ, Kung MP, Kung HF. Amino- and amidotetrabenazine derivatives: synthesis and evaluation as potential ligands for the vesicular monoamine transporter. Nucl Med Biol. 1995;22:527–535. [PubMed]
95. Leysen JE, Niemegeers CJE, Van Nueten JM, Laduron PM. [3H]Ketanserin (R-4-1468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol. 1982;21:301–314. [PubMed]
96. Darchen F, Scherman D, Laduron PM, Henry JP. Ketanserin binds to the monoamine transporter of chromaffin granules and of synaptic vesicles. Mol Pharmacol. 1988;33:672–677. [PubMed]
97. Henry JP, Gasnier B, Isambert MF, Darchen F, Scherman D. Ketanserin as a ligand of the vesicular monoamine transporter. Adv Biosci. 1991;82:147–150.
98. Leysen JE, Eens A, Gommeren W, Van Gompel P, Wynants J, Janssen PAJ. Identification of nonserotonergic [3H]ketanserin binding sites associated with nerve terminals in rat brain and with platelets; relation with release of biogenic amine metabolites induced by ketanserin-and tetrabenazine-like drugs. J Pharmacol Exp Ther. 1988;244:310–321. [PubMed]
99. Isambert MF, Gasnier B, Laduron PM, Henry JP. Photoaffinity labeling of the monoamine transporter of bovine chromaffin granules and other monoamine storage vesicles using 7-azido-8-[125I]iodoketanserin. Biochemistry. 1989;28:2265–2270. [PubMed]
100. Yamada S, Isogai M, Kagawa Y, et al. Brain nicotinic acetylcholine receptors: biochemical characterization by neosurugatoxin. Mol Pharmacol. 1985;28:120–127. [PubMed]
101. Lippiello PM, Fernandes KG. The binding of L-[3H]nicotine to a single class of high affinity sites in rat brain membranes. Mol Pharmacol. 1986;29:448–454. [PubMed]
102. Banerjee S, Abood LG. Nicotine antagonists: phosphoinositide turnover and receptor binding to determine muscarinic properties. Biochem Pharmacol. 1989;38:2933–2935. [PubMed]
103. Broussolle EP, Wong DF, Fanelli RJ, London ED. In vivo specific binding of [3H]L-nicotine in the mouse brain. Life Sci. 1989;44:1123–1132. [PubMed]
104. Damaj MI, Patrick GS, Creasy KR, Martin BR. Pharmacology of lobeline, a nicotinic receptor ligand. J Pharmacol Exp Ther. 1997;282:410–419. [PubMed]
105. Barlow RB, Johnson O. Relations between structure and nicotine-like activity: X-ray crystal structure analysis of (−)-cytisine and (−)-lobeline hydrochloride and a comparison with (−)-nicotine and other nicotine-like compounds. Br J Pharmacol. 1989;98:799–808. [PMC free article] [PubMed]
106. Olin BR, Hebel SK, Gremp JL, Hulbertt MK. Smoking deterrents. In: Olin BR, Hebel SK, Gremp JL, Hulbertt MK, editors. Drug Facts and Comparisons. St. Louis, MO: JB Lippincott; 1995. pp. 3087–3095.
107. Sloan JW, Martin WR, Bostwick M, Hook R, Wala E. The competitive binding characteristics of nicotine ligands and their pharmacology. Pharmacol Biochem Behav. 1988;30:255–267. [PubMed]
108. Brioni JD, O'Neill AB, Kim DJB, Decker MW. Nicotine receptor agonists exhibit anxiolytic-like effects on the elevated plus-maze test. Eur J Pharmacol. 1993;238:1–8. [PubMed]
109. Decker MW, Majchzark MJ, Arneric SP. Effects of lobeline, a nicotine receptor agonist, on learning and memory. Pharmacol Biochem Behav. 1993;45:571–576. [PubMed]
110. Rasmussen T, Swedberg MDB. Reinforcing effects of nicotinic compounds: intravenous self-administration in drug-naive mice. Pharmacol Biochem Behav. 1998;60:567–573. [PubMed]
111. Harrod SB, Dwoskin LP, Green TA, Gehrke BJ, Bardo MT. Lobeline does not serve as a reinforcer in rats. Psychopharmacology (Berl) 2003;165:397–404. [PubMed]
112. Fudala PJ, Iwamoto ET. Further studies on nicotine-induced conditioned place preference in the rat. Pharmacol Biochem Behav. 1986;25:1041–1049. [PubMed]
113. Stolerman IP, Garcha HS, Mirza NR. Dissociation between the locomotor stimulant and depressant effects of nicotinic agonists in rats. Psychopharmacology (Berl) 1995;117:430–437. [PubMed]
114. Dwoskin LP, Crooks PA. A novel mechanism of action and potential use for lobeline as a treatment for psychostimulant abuse. Biochem Pharmacol. 2002;63:89–98. [PubMed]
115. Gallardo KA, Leslie FM. Nicotine-stimulated release of [3H]norepinephrine from fetal, rat locus coeruleus cells in culture. J Neurochem. 1998;70:663–670. [PubMed]
116. Miller DK, Crooks PA, Dwoskin LP. Lobeline inhibits nicotine-evoked [3H]dopamine overflow from rat striatal slices and nicotine-evoked 86Rb+ efflux from thalamic synaptosomes. Neuropharmacology. 2000;39:2654–2662. [PubMed]
117. Miller DK, Crooks PA, Zheng G, Grinevich VP, Norrholm S, Dwoskin LP. Lobeline analogues with enhanced affinity and selectivity for plasmalemma and vesicular monoamine transporters. J Pharmacol Exp Ther. 2004;310:1035–1045. [PubMed]
118. Briggs CA, McKenna DG. Activation and inhibition of the human alpha 7 nicotinic acetylcholine receptor by agonist binding affinity. Mol Pharmacol. 1998;37:1095–1102. [PubMed]
119. Teng L, Crooks PA, Sonsalla PK, Dwoskin LP. Lobeline and nicotine evoke [3H]overflow from rat striatal slices preloaded with [3H]dopamine: differential inhibition of synaptosomal and vesicular [3H]dopamine uptake. J Pharmacol Exp Ther. 1997;280:1432–1444. [PubMed]
120. Teng L, Crooks PA, Dwoskin LP. Lobeline displaces [3H]dihydrotetrabenazine binding and releases [3H]dopamine from rat striatal synaptic vesicles: comparison with d-amphetamine. J Neurochem. 1998;71:258–265. doi: 10.1046/j.1471-4159.1998.71010258.x. [PubMed] [Cross Ref]
121. Miller DK, Crooks PA, Teng L, et al. Lobeline inhibits the neurochemical and behavioral effects of amphetamine. J. Pharmacol Exp Ther. 2001;296:1023–1034. [PubMed]
122. Miller DK, Harrod SB, Green TA, Wong MY, Bardo MT, Dwoskin LP. Lobeline attenuates the locomotor stimulation induced by repeated nicotine administration in rats. Pharmacol Biochem Behav. 2003;74:279–286. [PubMed]
123. Harrod SB, Dwoskin LP, Crooks PA, Klebaur JE, Bardo MT. Lobeline attenuates d-methamphetamine self-administration in rats. J Pharmacol Exp Ther. 2001;298:172–179. [PubMed]
124. Zheng G, Dwoskin LP, Deaciuc AG, Norrholm SD, Crooks PA. Defunctionalized lobeline analogues: structure-activity of novel ligands for the vesicular monoamine transporter. J Med Chem. 2005;48:5551–5560. [PMC free article] [PubMed]
125. Zheng G, Dwoskin LP, Deaciuc AG, Zhu J, Jones MD, Crooks PA. Lobelane analogues, as novel ligands for the vesicular monoamine transporter-2. Bioorg Med Chem. 2005;13:3899–3909. doi: 10.1016/j.bmc.2005.04.013. [PMC free article] [PubMed] [Cross Ref]
126. Zheng G, Dwoskin LP, Deaciuc AG, Crooks PA. Synthesis and evaluation of a series of tropane analogues as novel vesicular monoamine transporter-2 ligands. Bioorg Med Chem Lett. 2005;15:4463–4466. [PMC free article] [PubMed]
127. Perera RP, Wimalasena DS, Wimalasena K. Characterization of a series of 3-amino-2-phenyl-propene derivatives as novel bovine chromaffin vesicular monoamine transporter inhibitors. J Med Chem. 2003;46:2599–2605. [PubMed]
128. Merickel A, Rosandich P, Peter D, Edwards RH. Identification of residues involved in substrate recognition by a vesicular monoamine transporter. J Biol Chem. 1995;270:25798–25804. [PubMed]
129. Merickel A, Kaback HR, Edwards RH. Charged residues in transmembrane domains II and XI of a vesicular monoamine transporter form a charge pair that promotes high affinity substrate recognition. J Biol Chem. 1997;272:5403–5408. [PubMed]
130. Peter D, Vu T, Edwards RH. Chimeric vesicular monoamine transporters identify structural domains that influence substrate affinity and sensitivity to tetrabenazine. J Biol Chem. 1996;271:2979–2986. [PubMed]
131. Finn JP, Edwards RH. Individual residues contribute to multiple differences in ligand recognition between vesicular monoamine transporters 1 and 2. J Biol Chem. 1997;272:16301–16307. [PubMed]
132. Sievert MK, Ruoho AE. Peptide mapping of the [125I]iodoazidok etanserin and [125I]2-N-[(3′-iodo-4′-azidophenyl)propionyl]tetrabenazine binding sites for the synaptic vesicle monoamine transporter. J Biol Chem. 1997;272:26049–26055. [PubMed]
133. Thiriot DS, Ruoho AE. Mutagenesis and derivatization of human vesicle monoamine transporter 2 (VMAT2) cysteines identifies transporter domains involved in tetrabenazine binding and substrate transport. J Biol Chem. 2001;276:27304–27315. [PubMed]
134. Thiriot DS, Sievert MK, Ruoho AE. Identification of human vesicle monoamine transporter (VMAT2) lumenal cysteines that form an intramolecular disulfide bond. Biochemistry. 2002;41:6346–6353. [PubMed]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists