PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of aapsjspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
 
AAPS J. 2005 September; 7(3): E532–E543.
Published online 2005 October 7. doi:  10.1208/aapsj070354
PMCID: PMC2751256

Toward the prediction of CNS drug-effect profiles in physiological and pathological conditions using microdialysis and mechanism-based pharmacokinetic-pharmacodynamic modeling

Abstract

Our ultimate goal is to develop mechanism-based pharmacokinetic (PK)-pharmacodynamic (PD) models to characterize and to predict CNS drug responses in both physiologic and pathologic conditions. To this end, it is essential to have information on the biophase pharmacokinetics, because these may significantly differ from plasma pharmacokinetics. it is anticipated that biophase kinetics of CNS drugs are strongly influenced by transport across the blood-brain barrier (BBB). The special role of microdialysis in PK/PD modeling of CNS drugs lies in the fact that it enables the determination of free-drug concentrations as a function of time in plasma and in extracellular fluid of the brain, thereby providing important data to determine BBB transport characteristics of drugs. Also, the concentrations of (potential) extracellular biomarkers of drug effects or disease can be monitored with this technique. Here we describe our studies including microdialysis on the following: (1) the evaluation of the free drug hypothesis;(2) the role of BBB transport on the central effects of opioids; (3) changes in BBB transport and biophase equilibration of anti-epileptic drugs; and (4) the relation among neurodegeneration, BBB transport, and drug effects in Parkinson’s disease progression.

Full Text

The Full Text of this article is available as a PDF (671K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Hammarlund-Udenaes M, Paalzow LN, de Lange EC. Drug equilibration across the blood-brain barrier-pharmacokinetic considerations based on the microdialysis method. Pharm Res. 1997;14:128–134. doi: 10.1023/A:1012080106490. [PubMed] [Cross Ref]
2. De Lange EC, Danhof M. Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet. 2002;41:691–703. doi: 10.2165/00003088-200241100-00001. [PubMed] [Cross Ref]
3. Van der Graaf PH, Danhof M. Analysis of drug-receptor interactions in vivo: a new approach in pharmacokinetic-pharmacodynamic modelling. Int J Clin Pharmacol Ther. 1997;35:442–446. [PubMed]
4. Garrido M, Gubbens-Stibbe J, Tukker E, et al. Pharmacokinetic-pharmacodynamic analysis of the EEG effect of alfentanil in rats following beta-funaltrexamine-induced mu-opioid receptor “knockdown” in vivo. Pharm Res. 2000;17:653–659. doi: 10.1023/A:1007513812018. [PubMed] [Cross Ref]
5. Cleton A, Odman J, Van der Graaf PH, Ghijsen W, Voskuyl R, Danhof M. Mechanism-based modeling of functional adaptation upon chronic treatment with midazolam. Pharm Res. 2000;17:321–327. doi: 10.1023/A:1007505223519. [PubMed] [Cross Ref]
6. Cox EH, Kerbusch T, Van der Graaf PH, Danhof M. Pharmacokinetic-pharmacodynamic modeling of the electroencephalogram effect of synthetic opioids in the rat. Correlation with binding at the μ-opioid receptor. J Pharmacol Exp Ther. 1998;284:1095–1103. [PubMed]
7. Collins JM, Dedrick LD. Distributed model for drug delivery to CSF and brain tissue. J Am Physiol. 1983;14:R303–R310. [PubMed]
8. Wang YF, Welty DF. The simultaneous estimation of the influx and efflux blood-brain barrier permeabilities of gabapentin using a microdialysis-pharmacokinetic approach. Pharm Res. 1996;13:398–403. doi: 10.1023/A:1016092525901. [PubMed] [Cross Ref]
9. Bodor N, Brewster ME. Problems of delivery of drugs to the brain. Pharmacol Ther. 1982;19:337–386. doi: 10.1016/0163-7258(82)90073-0. [PubMed] [Cross Ref]
10. Begley DJ. ABC transporters and the blood-brain barrier. Curr Pharm Des. 2004;10:1295–1312. doi: 10.2174/1381612043384844. [PubMed] [Cross Ref]
11. Tamai I, Yamashita J, Kido Y, et al. Limited distribution of new quinolone antibacterial agents into brain caused by multiple efflux transporters at the blood-brain barrier. J Pharmacol Exp Ther. 2000;295:146–152. [PubMed]
12. Cordon-Cardo C, O’Brien JP, Casals D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA. 1989;86:695–689. doi: 10.1073/pnas.86.2.695. [PubMed] [Cross Ref]
13. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA. 1987;84:7735–7738. doi: 10.1073/pnas.84.21.7735. [PubMed] [Cross Ref]
14. de Boer AG, van der Sandt I, Glillard PJ. The role of drug transporters at the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2003;43:629–656. doi: 10.1146/annurev.pharmtox.43.100901.140204. [PubMed] [Cross Ref]
15. Zhang Y, Schuetz JD, Elmquist WF, Miller DW. Plasma membrane localization of multidrug resistance-associated protein homologs in brain capillary endothelial cells. J Pharmacol Exp Ther. 2004;311:449–455. doi: 10.1124/jpet.104.068528. [PubMed] [Cross Ref]
16. Park S, Sinko PJ. P-glycoprotein and mutlidrug resistance-associated proteins limit the brain uptake of saquinavir in mice. J Pharmacol Exp Ther. 2005;312:1249–1256. doi: 10.1124/jpet.104.076216. [PubMed] [Cross Ref]
17. Abbott NJ, Revest PA. Control of brain endothelial permeability. Cerebrovasc Brain Metab Rev. 1991;3:39–72. [PubMed]
18. Cornford EM, Young D, Paxton JW, Sofia RD. Blood-brain barrier penetration of felbamate. Epilepsia. 1992;33:944–954. doi: 10.1111/j.1528-1157.1992.tb02205.x. [PubMed] [Cross Ref]
19. Johansson BB. Hypertension. In: Pardridge WM, editor. Introduction to the Blood-brain Barrier: Methodology, Biology, and Pathology. Cambridge, UK: Cambridge University Press; 1998. pp. 427–433.
20. Hesselink MB, Smolders H, Eilbacher B, De Boer AG, Boer AG, Breimer DD, Danysz W. The role of probenecid-sensitive organic acid transport in the pharmacokinetics of N-methyl-D-aspartate receptor antagonists acting at the glycine(B)-site: Microdialysis and maximum electroshock seizures studies. J Pharmacol Exp Ther. 1999;290:543–550. [PubMed]
21. Malhotra BK, Lemaire M, Sawchuk RJ. Investigation of the distribution of EAB 515 to cortical ECF and CSF in freely moving rats utilizing microdialysis. Pharm Res. 1994;11:1223–1231. doi: 10.1023/A:1018921906993. [PubMed] [Cross Ref]
22. Ooie T, Terasaki T, Suzuki H, Sugiyama Y. Kinetic evidence for active efflux transport across the blood-brain barrier of quinolone antibiotics. J Pharmacol Exp Ther. 1997;283:293–304. [PubMed]
23. de Lange ECM, de Vries JD, Zurcher C, Danhof M, de Boer AG, Breimer DD. The use of intracerebral microdialysis for the determination of pharmacokinetic profiles of anticancer drugs in tumor-bearing rat brain. Pharm Res. 1995;12:1924–1931. doi: 10.1023/A:1016239822287. [PubMed] [Cross Ref]
24. de Lange ECM, Danhof M, de Boer AG, Breimer DD. Critical factors of intracerebral microdialysis as a technique to determine the pharmacokinetics of drugs in rat brain. Brain Res. 1994;666:1–8. doi: 10.1016/0006-8993(94)90276-3. [PubMed] [Cross Ref]
25. de Lange ECM, Bouw MR, Danhof M, de Boer AG, Breimer DD. Application of intracerebral microdialysis to study regional distribution kinetics of drugs in rat brain. Br J Pharmacol. 1995;116:2538–2544. [PMC free article] [PubMed]
26. de Lange EC, de Bock G, Schinkel AH, de Boer AG, Breimer DD. BBB transport and P-glycoprotein functionality using MDR1A(−/−) and wild-type mice. Total brain versus microdialysis concentration profiles of rhodamine-123. Pharm Res. 1998;15:1657–1665. doi: 10.1023/A:1011988024295. [PubMed] [Cross Ref]
27. Xie R, Hammarlund-Udenaes M, de Boer AG, de Lange EC. The role of P-glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis studies in mdrla(−/−) and mdrla(+/+) mice. Br J Pharmacol. 1999;128:563–568. doi: 10.1038/sj.bjp.0702804. [PMC free article] [PubMed] [Cross Ref]
28. de Lange ECM, Marchand S, van den Berg D, et al. In vitro and in vivo investigations on fluoroquinolones; effects of the P-glycoprotein efflux transporter on brain distribution of sparfloxacin. Eur J Pharmacol Sci. 2000;12:85–93. doi: 10.1016/S0928-0987(00)00149-4. [PubMed] [Cross Ref]
29. de Lange ECM, Danhof M, de Boer AG, Breimer DD. Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood-brain barrier. Brain Res Brain Res Rev. 1997;25:27–49. doi: 10.1016/S0165-0173(97)00014-3. [PubMed] [Cross Ref]
30. Breimer DD, Danhof M. Prediction of the time course of drug effects in vivo in health and disease (intensity and duration) Clin Pharmacokinet. 1997;32:259–267. doi: 10.2165/00003088-199732040-00001. [PubMed] [Cross Ref]
31. Breimer DD, Danhof M. Relevance of the application of pharmacokinetic-pharmacodynamic modelling concepts in drug development. The ‘wooden shoe’ paradigm. Clin Pharmacokinet. 1997;32:259–267. doi: 10.2165/00003088-199732040-00001. [PubMed] [Cross Ref]
32. Cleton A, Odman J, van der Graaf PH, Ghijsen W, Voskuyl R, Danhof M. Mechanism-based modeling of functional adaptation upon chronic treatment with midazolam. Pharm Res. 2000;17:321–327. doi: 10.1023/A:1007505223519. [PubMed] [Cross Ref]
33. Danhof M, Mandema JW, Hoogerkamp A, Mathôt RAA. Pharmacokinetic-pharmacodynamic modelling in pre-clinical investigations: principles and perspectives. Eur J Drug Metab Pharmacokinet. 1993;18:41–47. [PubMed]
34. Black JW, Leff P. Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci. 1983;220:141–162. [PubMed]
35. Black JW, Leff P, Shankley NP, Wood J. An operational model of pharmacological agonism: the effect of E/[A], curve shape on agonist dissociation constant estimation. Br J Pharmacol. 1985;84:561–571. [PMC free article] [PubMed]
36. Van der Graaf PH, Van Schaick EA, Visser SA, De Greef HJ, Ijzerman AP, Danhof M. Mechanism-based pharmacokinetic-pharmacodynamic modeling of antilipolytic effects of adenosine A(1) receptor agonists in rats: prediction of tissue-dependent efficacy in vivo. J Pharmacol Exp Ther. 1999;290:702–709. [PubMed]
37. Furchgott RF. The use of β-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes. Adv Drug Res. 1966;3:21–55.
38. Christ GJ. Determination of agonist dissociation constants in isolated vasculature: equivalence of estimates obtained by the method of partial irreversible receptor inactivation and a novel application of the operational model of pharmacological agonism. Life Sci. 1990;47:1867–1874. doi: 10.1016/0024-3205(90)90290-8. [PubMed] [Cross Ref]
39. Welty DF, Schielke GP, Vartanian MG, Taylor CP. Gabapentin anticonvulsant action in rats: disequilibrium with peak drug concentrations in plasma and brain microdialysate. Epilepsy Res. 1993;16:175–181. doi: 10.1016/0920-1211(93)90078-L. [PubMed] [Cross Ref]
40. Danhof M, Mandema JW. Modeling of relationships between pharmacokinetics and pharmacodynamics. In: Welling PG, Tse F, editors. Pharmacokinetics. New York: Marcel Dekker; 1994. pp. 139–174.
41. Dubey RK, McAllister CB, Inoue M, Wilkinson GR. Plasma binding and transport of diazepam across the blood-brain barrier. No evidence for in vivo enhanced dissociation. J Clin Invest. 1989;84:1155–1159. doi: 10.1172/JCI114279. [PMC free article] [PubMed] [Cross Ref]
42. Robinson PJ, Rapoport SI. Kinetics of protein binding determine rates of uptake of drugs by brain. Am J Physiol. 1986;251:R1212–R1220. [PubMed]
43. Rowley M, Kulagowski JJ, Watt AP, et al. Effect of plasma protein binding on in vivo activity and brain penetration of glycine/NMDA receptor antagonists. J Med Chem. 1997;40:4053–4068. doi: 10.1021/jm970417o. [PubMed] [Cross Ref]
44. Urien S, Pinquier JL, Paquette B, Chaumet RP, Kiechel JR, Tillement JP. Effect of the binding of isradipine and darodipine to different plasma proteins on their transfer through the blood-brain barrier. J Pharmacol Exp Ther. 1987;242:349–353. [PubMed]
45. Tanaka H, Mizojiri K. Drug-protein binding and blood-brain barrier permeability. J Pharmacol Exp Ther. 1999;288:912–918. [PubMed]
46. Pardridge WM, Sakiyama R, Fierer G. Transport of propanolol and lidocaine through the rat blood-brain barrier. Primary role of globulin-bound drug. J Clin Invest. 1983;71:900–908. doi: 10.1172/JCI110844. [PMC free article] [PubMed] [Cross Ref]
47. Pardridge WM. Recent advances in blood-brain barrier transport. Annu Rev Pharmacol Toxicol. 1988;28:25–39. doi: 10.1146/annurev.pa.28.040188.000325. [PubMed] [Cross Ref]
48. Davson H, Segal MB. Physiology of the CSF and blood-brain barriers. Boca Raton, FL: CRC Press; 1996.
49. Vorbrodt AW. Ultrastructural cytochemistry of blood-brain barrier endothelia. Prog Histochem Cytochem. 1988;18:1–99. [PubMed]
50. van Bree JB, de Boer AG, Danhof M, Ginsel LA, Breimer DD. Characterization of an “in vitro” blood-brain barrier: effects of molecular size and lipophilicity on cerebrovascular endothelial transport rates of drugs. J Pharmacol Exp Ther. 1988;247:1233–1239. [PubMed]
51. van de Waterbeemd H, Camenisch G, Folkers G, Chretien JR, Raevsky OA. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J Drug Target. 1998;6:151–165. [PubMed]
52. Oldendorf WH. Lipid solubility and drug penetration of the blood-brain barrier. Proc Soc Exp Biol Med. 1974;147:813–815. [PubMed]
53. Oldendorf WH. Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain Res. 1970;24:372–376. doi: 10.1016/0006-8993(70)90123-X. [PubMed] [Cross Ref]
54. Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem. 1980;23:682–684. doi: 10.1021/jm00180a022. [PubMed] [Cross Ref]
55. Rubin LL, Staddon JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci. 1999;22:11–28. doi: 10.1146/annurev.neuro.22.1.11. [PubMed] [Cross Ref]
56. Suzuki H, Terasaki T, Sugiyama Y. Role of efflux transport across the blood-brain barrier and blood-cerebrospinal fluid barrier on the disposition of xenobiotics in the central nervous system. Adv Drug Del Rev. 1997;25:257–285. doi: 10.1016/S0169-409X(97)00503-6. [Cross Ref]
57. Scism JL, Powers KM, Artru AA, et al. Effects of probenecid on brain-cerebrospinal fluid-blood distribution kinetics of E-Delta(2)-valproic acid in rabbits. Drug Metab Dispos. 1997;25:1337–1346. [PubMed]
58. Deguchi Y, Nowaza K, Yamada S, Yokoyama Y, Kimura R. Quantitative evaluation of brain distribution and blood-brain barrier efflux transport of probenecid in rats by microdialysis. Possible involvement of the monocarboxylic acid transport system. J Pharmacol Exp Ther. 1997;280:551–560. [PubMed]
59. Schinkel AH, Wagenaar E, Mol CAAM, van Deemter L. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest. 1996;97:2517–2524. doi: 10.1172/JCI118699. [PMC free article] [PubMed] [Cross Ref]
60. Schinkel AH, Smit JJM, van Tellingen O, et al. Disruption of the mouse mdr la P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell. 1994;77:491–502. doi: 10.1016/0092-8674(94)90212-7. [PubMed] [Cross Ref]
61. Wandel C, Kim R, Wood M, Wood A. Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology. 2002;96:913–920. doi: 10.1097/00000542-200204000-00019. [PubMed] [Cross Ref]
62. Uhr M, Steckler T, Yassouridis A, Holsboer F. Penetration of amitriptyline, but not of fluoxitine, into brain is enhanced in mice with blood-brain barrier deficiency due to Mdrla P-glycoprotein gene disruption. Neurospsychopharmacology. 2000;22:380–387. doi: 10.1016/S0893-133X(99)00095-0. [PubMed] [Cross Ref]
63. Mahar Doan KM, Humphreys JE, Webster LO, et al. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther. 2002;303:1029–1037. doi: 10.1124/jpet.102.039255. [PubMed] [Cross Ref]
64. Kim RB. Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev. 2002;34:47–54. doi: 10.1081/DMR-120001389. [PubMed] [Cross Ref]
65. Gross PM, Sposito NM, Pettersen SE, Fenstermacher JD. Differences in function and structure of the capillary endothelium in gray matter, white matter, and a circumventricular organ of rat brain. Blood Vessels. 1986;23:261–270. [PubMed]
66. Collins JM, Dedrick LD. Distributed model for drug delivery to CSF and brain tissue. J Am Physiol. 1983;14:R303–R310. [PubMed]
67. Davson H, Segal MB. Physiology of the CSF and blood-brain barriers. Boca Raton, FL: CRC Press; 1996.
68. Yu D-W, Gatley SJ, Wolf AP, et al. Synthesis of carbon-11 labeled iodinated cocaine derivatives and their distribution in baboon brain measured using positron emission tomography. J Med Chem. 1992;35:2178–2183. doi: 10.1021/jm00090a005. [PubMed] [Cross Ref]
69. Fenstermacher JD, Patlak CS, Blasberg RG. Transport of material between brain extracellular fluid, brain cells and blood. Fed Proc. 1974;33:2070–2074. [PubMed]
70. Walker MC, Tong X, Perry H, Alavijeh MS, Patsalos PN. Comparison of serum, cerebrospinal fluid and brain extracellular fluid pharmacokinetics of lamotrigine. Br J Pharmacol. 2000;130:242–248. doi: 10.1038/sj.bjp.0703337. [PMC free article] [PubMed] [Cross Ref]
71. Lee G, Dallas S, Hong M, Bendayan R. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev. 2001;53:569–596. [PubMed]
72. Wong SL, Van Belle K, Sawchuk RJ. Distributional transport kinetics of zidovudine between plasma and brain extracellular fluid and cerebrospinal fluid blood-barriers in the rabbit: investigation on the inhibitory effect of probenecid utilizing microdialysis. J Pharmacol Exp Ther. 1993;264:899–909. [PubMed]
73. Ghersi-Egea JF, Leininger-Muller B, Suleman G, Siest G, Minn A. Localization of drug-metabolizing enzyme activities to blood-brain interfaces and circumventricular organs. J Neurochem. 1994;62:1089–1096. [PubMed]
74. Del Bigio MR. The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia. 1995;14:1–13. doi: 10.1002/glia.440140102. [PubMed] [Cross Ref]
75. Cserr HF. Convection of brain interstitial fluid. In: Shapiro K, Marmarou A, Portnoy H, editors. Hydrocephalus. New York: Raven Press; 1984. pp. 59–68.
76. Bouw R, Ederoth P, Lundberg J, Ungerstedt U, Nordstrom CH, Hammarlund-Udenaes M. Increased blood-brain barrier permeability of morphine in a patient with severe brain lesions as determined by microdialysis. Acta Anaesthesiol Scand. 2001;45:390–392. doi: 10.1034/j.1399-6576.2001.045003390.x. [PubMed] [Cross Ref]
77. Bolwig TG, Hertz MM, Paulson OB, Spotoft H, Rafaelsen OJ. The permeability of the blood-brain barrier during electrically induced seizures in man. Eur J Clin Invest. 1977;7:87–93. doi: 10.1111/j.1365-2362.1977.tb01578.x. [PubMed] [Cross Ref]
78. Brosman CF, Claudio L. Brain microvasculature in multiple sclerosis. In: Pardridge WM, editor. Introduction to the Blood-Brain Barrier: Methodology, Biology, and Pathology. Cambridge, UK: Cambridge University Press; 1998. pp. 386–400.
79. de Vries HE, Kuiper J, de Boer AG, Van Berkel TJ, Breimer DD. The blood-brain barrier in neuro-inflammatory diseases. Pharmacol Rev. 1997;49:143–156. [PubMed]
80. Povlishock JT. The pathophysiology of blood-brain barrier dysfunction due to traumatic brain injury. In: Pardridge WM, editor. Introduction to the Blood-Brain Barrier: Methodology, Biology, and Pathology. Cambridge, UK: Cambridge University Press; 1998. pp. 441–453.
81. Steward PA, Mikulis D. The blood-brain barrier in brain tumours. In: Pardridge WM, editor. Introduction to the Blood-Brain Barrier: Methodology, Biology, and Pathology. Cambridge, UK: Cambridge University Press; 1998. pp. 434–440.
82. de Rick AF, Belpaire FM, Dello C, Bogaert MG. Influence of enhanced AAG concentration on protein binding, pharmacokinetics and anti-arrhythmic effect of lidocaine in the dog. J Pharmacol Exp Ther. 1987;241:289–293. [PubMed]
83. Jolliet P, Simon N, Bree F, et al. Blood-to-brain transfer of various oxicams: effects of plasma binding on their brain delivery. Pharm Res. 1997;14:650–656. doi: 10.1023/A:1012165414610. [PubMed] [Cross Ref]
84. Lin TH, Sawada Y, Sugiyama Y, Iga T, Hanano M. Effects of albumin and alpha 1-acid glycoprotein on the transport of imipramine and desipramine through the blood-brain barrier in rats. Chem Pharm Bull (Tokyo) 1987;35:294–301. [PubMed]
85. Mandema JW, Sansom LN, Dios-Vièitez MC, Hollander-Jansen M, Danhof M. Pharmacokinetic-pharmacodynamic modelling of the EEG effects of benzodiazepines. Correlation with receptor binding and anticonvulsant activity. J Pharmacol Exp Ther. 1991;257:472–478. [PubMed]
86. Mandema JW, Tukker E, Danhof M. Pharmacokinetic-Pharmacodynamic Modelling of the EEG effects of midazolam in individual rats: influence of rate and route of administration. Br J Pharmacol. 1991;102:663–668. [PMC free article] [PubMed]
87. Derendorf H, Hochhaus G, Mollmann H, et al. Receptor-based pharmacokinetic-pharmacodynamic analysis of corticosteroids. J Clin Pharmacol. 1993;33:115–123. [PubMed]
88. van Steeg T, Macintyre F, Danhof M, de Lange ECM. The influence of an increase in plasma protein binding on the pharmacokinetics and pharmacodynamics of S(−)-Propranolol. Poster presentation at the Population Approach Group Europe (PAGE), 2005, Pamplona, Spain.
89. Tunblad K, Ederoth P, Gardenfors A, Hammarlund-Udenaes M, Nordstrom CH. Altered brain exposure of morphine in experimental meningitis studied with microdialysis. Acta Anaesthesiol Scand. 2004;48:294–301. doi: 10.1111/j.0001-5172.2003.0311.x. [PubMed] [Cross Ref]
90. Tunblad K, Jonsson EN, Hammarlund-Udenaes M. Morphine blood-brain barrier transport is influenced by probenecid co-administration. Pharm Res. 2003;20:618–623. doi: 10.1023/A:1023250900462. [PubMed] [Cross Ref]
91. Bouw MR, Xie R, Tunblad K, Hammarlund-Udenaes M. Blood-brain barrier transport and brain distribution of morphine-6-glucuronide in relation to the antinociceptive effect in rats—pharmacokinetic/pharmacodynamic modelling. Br J Pharmacol. 2001;134:1796–804. doi: 10.1038/sj.bjp.0704406. [PMC free article] [PubMed] [Cross Ref]
92. Bouw MR, Gardmark M, Hammarlund-Udenaes M. Pharmacokinetic-pharmacodynamic modelling of morphine transport across the blood-brain barrier as a cause of the antinociceptive effect delay in rats—a microdialysis study. Pharm Res. 2000;17:1220–1227. doi: 10.1023/A:1026414713509. [PubMed] [Cross Ref]
93. Dagenais C, Graff CL, Pollack GM. Variable modulation of opioid brain uptake by P-glycoprotein in mice. Biochem Pharmacol. 2004;67:269–276. doi: 10.1016/j.bcp.2003.08.027. [PubMed] [Cross Ref]
94. Henthorn TK, Liu Y, Mahapatro M, Ng KY. Active transport of fentanyl by the blood-brain barrier. J Pharmacol Exp Ther. 1999;289:1084–1089. [PubMed]
95. Letrent SP, Pollack GM, Brouwer KR, Brouwer KL. Effect of GF120918, a potent P-glycoprotein inhibitor, on morphine pharmacokinetics and pharmacodynamics in the rat. Pharm Res. 1998;15:599–605. doi: 10.1023/A:1011938112599. [PubMed] [Cross Ref]
96. Letrent SP, Pollack GM, Brouwer KR, Brouwer KL. Effects of a potent and specific P-glycoprotein inhibitor on the blood-brain barrier distribution and antinociceptive effect of morphine in the rat. Drug Metab Dispos. 1999;27:827–834. [PubMed]
97. Groenendaal D, de Mik D, Nicholls G, et al. Towards a mechanism-based pharmacokinetic/pharmacodynamic model for opioids: influence of P-glycoprotein and apparent permeability in vitro. Submitted, 2005. Jake has AQ out on status.
98. Groenendaal D, de Mik D, Freijer J, et al. Towards a mechanism-based pharmacokinetic/pharmacodynamic model for opioids: combined microdialysis/EEG studies on morphine. Poster presentation at the 4th International Symposium on Microdialysis in Drug Research and Development, Vienna, Austria, 2004.
99. Sills GJ, Kwan P, Butler E, de Lange EC, van den Berg DJ, Brodie MJ. P-glycoprotein-mediated efflux of anti-epileptic drugs: preliminary studies in mdrla knockout mice. Epilepsy Behav. 2002;3:427–432. doi: 10.1016/S1525-5050(02)00511-5. [PubMed] [Cross Ref]
100. Kwan P, Brodie MJ. Potential role of drug transporters in the pathogenesis of medically intractable epilepsy. Epilepsia. 2005;46:224–235. doi: 10.1111/j.0013-9580.2005.31904.x. [PubMed] [Cross Ref]
101. Gibbs JP, Adeyeye MC, Yang Z, Shen DD. Valproic acid uptake by bovine brain microvessel endothelial cells: role of active efflux transport. Epilepsy Res. 2004;58:53–66. doi: 10.1016/j.eplepsyres.2003.12.008. [PubMed] [Cross Ref]
102. Volk HA, Burkhardt K, Potschka H, Chen J, Becker A, Loscher W. Neuronal expression of the drug efflux transporter P-glycoprotein in the rat hippocampus after limbic seizures. Neuroscience. 2004;123:751–759. doi: 10.1016/j.neuroscience.2003.10.012. [PubMed] [Cross Ref]
103. Marroni M, Marchi N, Cucullo L, Abbott NJ, Signorelli K, Janigro D. Vascular and parenchymal mechanisms in multiple drug resistance: a lesson from human epilepsy. Curr Drug Targets. 2003;4:297–304. doi: 10.2174/1389450033491109. [PubMed] [Cross Ref]
104. Seiffert E, Dreier JP, Ivens S, et al. Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci. 2004;24:7829–7836. doi: 10.1523/JNEUROSCI.1751-04.2004. [PubMed] [Cross Ref]
105. Nitsch C, Klatzo I. Regional patterns of blood-brain barrier breakdown during epileptiform seizures induced by various convulsive agents. J Neurol Sci. 1983;59:305–322. doi: 10.1016/0022-510X(83)90016-3. [PubMed] [Cross Ref]
106. Petito CK, Schaefer JA, Plum F. Ultrastructural characteristics of the brain and blood-brain barrier in experimental seizures. Brain Res. 1977;127:251–267. doi: 10.1016/0006-8993(77)90539-X. [PubMed] [Cross Ref]
107. Tishler DM, Weinberg KI, Hinton DR, Barbaro N, Annett GM, Raffel C. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia. 1995;36:1–6. doi: 10.1111/j.1528-1157.1995.tb01657.x. [PubMed] [Cross Ref]
108. Voskuyl RA, Hoogerkamp A, Danhof M. Properties of the convulsive threshold determined by direct cortical stimulation in rats. Epilepsy Res. 1992;12:111–120. doi: 10.1016/0920-1211(92)90031-N. [PubMed] [Cross Ref]
109. Hoogerkamp A, Vis PW, Danhof M, Voskuyl RA. Characterization of the pharmacodynamics of several anti-epileptic drugs in a direct cortical stimulation model of anticonvulsant effect in the rat. J Pharmacol Exp Ther. 1994;269:521–528. [PubMed]
110. Radulovic LL, Turck D, von Hodenberg A, et al. Disposition of gabapentin (neurontin) in mice, rats, dogs, and monkeys. Drug Metab Dispos. 1995;23:441–448. [PubMed]
111. Vollmer KO, von Hodenberg A, Kolle EU. Pharmacokinetics and metabolism of gabapentin in rat, dog and man. Arzneimittelforschung. 1986;36:830–839. [PubMed]
112. Doble A. Excitatory amino acid receptors and neurodegeneration. Therapie. 1995;50:319–337. [PubMed]
113. Gerlach M, Desser H, Youdim MB, Riederer P. New horizons in molecular mechanisms underlying Parkinson’s disease and in our understanding of the neuroprotective effects of selegiline. J Neural Transm Suppl. 1996;48:7–21. [PubMed]
114. Gerlach M, Youdim MB, Riederer P. Pharmacology of selegiline. Neurology. 1996;47(suppl 3):S137–S145. [PubMed]
115. Mitchell IJ, Carroll CB. Reversal of parkinsonian symptoms in primates by antagonists of excitatory amino acid transmission: potential mechanisms of action. Neurosci Biobehav Rev. 1997;21:469–475. doi: 10.1016/S0149-7634(96)00036-X. [PubMed] [Cross Ref]
116. Paschen W. Polyamine metabolism in different pathological states of the brain. Mol Chem Neuropathol. 1992;16:241–271. doi: 10.1007/BF03159973. [PubMed] [Cross Ref]
117. Bernstein HG, Müller M. The cellular localization of the L-ornithine decarboxylase/polyamine system in normal and diseased central nervous systems. Prog Neurobiol. 1999;57:485–505. doi: 10.1016/S0301-0082(98)00065-3. [PubMed] [Cross Ref]
118. Kauppinen RA, Alhonen LI. Transgenic animals as models in the study of the neurobiological role of polyamines. Prog Neurobiol. 1995;47:545–563. doi: 10.1016/0301-0082(95)00037-2. [PubMed] [Cross Ref]
119. Williams K. Modulation and block of ion channels: a new biology of polyamines. Cell Signal. 1997;9:1–13. doi: 10.1016/S0898-6568(96)00089-7. [PubMed] [Cross Ref]
120. Williams K, Romano C, Dichter MA, Molinoff PB. Modulation of the NMDA receptor by polyamines. Life Sci. 1991;48:469–498. doi: 10.1016/0024-3205(91)90463-L. [PubMed] [Cross Ref]
121. Baskaya MK, Rao AM, Prasad MR, Dempsey RJ. Regional activity of ornithine decarboxylase and edema formation after traumatic brain injury. Neurosurgery. 1996;38:140–145. doi: 10.1097/00006123-199601000-00033. [PubMed] [Cross Ref]
122. Koenig H, Trout JJ, Goldstone AD, Lu CY. Capillary NMDA receptors regulate blood-brain barrier function and breakdown. Brain Res. 1992;588:297–303. doi: 10.1016/0006-8993(92)91589-7. [PubMed] [Cross Ref]
123. Poduslo JF, Curran GL. Polyamine modification increases the permeability of proteins at the blood-nerve and blood-brain barriers. J Neurochem. 1996;66:1599–1609. doi: 10.1046/j.1471-4159.1996.66041599.x. [PubMed] [Cross Ref]
124. Trout JJ, Koenig H, Goldstone AD, Lu CY. Blood-brain barrier breakdown in cold injury. Polyamine signals mediate active stimulation of endocytosis, vesicular transport, and microvillus formation in rat cerebral capillaries. Lab Invest. 1986;55:622–631. [PubMed]
125. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 2000;3:1301–1306. doi: 10.1038/81834. [PubMed] [Cross Ref]
126. Ravenstijn P, Merlini M, Hameetman M, et al. Blood-brain barrier permeability in Parkinson’s disease progression using the rotenone rat model. Poster presentation at the 4th International Symposium on Microdialysis in Drug Research and Development, Vienna, Austria, 2004.

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists