Search tips
Search criteria 


Logo of pharmscispringer.comThis journalToc AlertsSubmit OnlineOpen Choice
AAPS PharmSci. 2003 December; 5(4): 49–61.
Published online 2003 November 5. doi:  10.1208/ps050429
PMCID: PMC2750991

Pharmacogenomics of multigenic diseases: Sex-specific differences in disease and treatment outcome


Numerous genetic variations have been shown to affect disease susceptibility and drug response. Pharmacogenomics aims at improving therapy on the basis of genetic information for each individual patient. Furthermore, sex chromosomes broadly determine biological differences between males and females. Consequently, substantial sex differences exist in phenotypic manifestation of disease and treatment response. This review discusses the role of sex in coronary artery disease, schizophrenia, and depression—complex multigenic disorders with considerable sex differences in frequency and presentation. Moreover, genetic factors underlying disease and drug response appear to differ between male and female patients. This appears to result at least in part from different physiological effects exerted by sex hormones such that polymorphisms in susceptibility genes may have physiological relevance only in males or females. However, few examples have been discovered to play a role in complex multigenic diseases, and the mechanistic basis of genetic variants as sex-dependent susceptibility factors has yet to be explored. Therefore, pharmacogenomic studies must consider sex differences in an effort to optimize individual drug therapy.

Keywords: pharmacogenomics, sex differences, multigenic disease, candidate genes, coronary artery disease, depression, schizophrenia


An abbreviated version of this article, entitled “Pharmacogenomics: Sex Matters”, has been published in AAPS Newsmagazine, July 2003;6(7): 18–21, 44.


1. Ono S. Sex Chromosomes and Sex-linked Genes. Berlin, Germany: Springer-Verlag; 1967.
2. Skaletsky H, Kuroda-Kawaguchi T, Minx P, et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature. 2003;423(6942):825–837. doi: 10.1038/nature01722. [PubMed] [Cross Ref]
3. Chinnery P, Turnbull D. Mitochondrial DNA mutations in the pathogenesis of human disease. Mol Med Today. 2000;6:425–432. doi: 10.1016/S1357-4310(00)01805-0. [PubMed] [Cross Ref]
4. Barrett A, Smith E, Picker M. Sex-related differences in mechanical nociception and antinociception produced by mu- and kappa-opioid receptor agonists in rats. Eur J Pharmacol. 2002;452:163–173. doi: 10.1016/S0014-2999(02)02274-4. [PubMed] [Cross Ref]
5. Mogil J, Wilson S, Chesler E, et al. The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans. Proc Natl Acad Sci USA. 2003;100:4867–4872. doi: 10.1073/pnas.0730053100. [PubMed] [Cross Ref]
6. Anthony M., Berg M. Biologic and molecular mechanisms for sex differences in pharmacokinetics, pharmacodynamics, and pharma-cogenetics: Part II. J Womens Health Gend Based Med. 2002;11:617–629. doi: 10.1089/152460902760360568. [PubMed] [Cross Ref]
7. Schwartz J. The influence of sex on pharmacokinetics. Clin Pharmacokinet. 2003;42:107–121. doi: 10.2165/00003088-200342020-00001. [PubMed] [Cross Ref]
8. Cambien F, Poirier O, Nicand V, et al. Sequence diversity in 36 candidate genes for cardiovascular disorders. Am J Hum Genet. 1999;65:183–191. doi: 10.1086/302448. [PubMed] [Cross Ref]
9. Lusis A. Atherosclerosis. Nature. 2000;407:233–241. doi: 10.1038/35025203. [PMC free article] [PubMed] [Cross Ref]
10. Massart F., Reginster J, Brandi M. Genetics of menopause diseases. Maturitas. 2001;40:103–116. doi: 10.1016/S0378-5122(01)00283-3. [PubMed] [Cross Ref]
11. Bodnar J, Chatterjee A, Castellani L, et al. Positional cloning of the combined hyperlipidemia gene Hyplip 1. Nat Genet. 2002;30(1):110–116. doi: 10.1038/ng811. [PMC free article] [PubMed] [Cross Ref]
12. Zwarts K, Clee S, Zwinderman A, et al. ABCA1 regulatory variants influence coronary artery disease independent of effects on plasma lipid levels. Clin Genet. 2002;61:115–125. doi: 10.1034/j.1399-0004.2002.610206.x. [PubMed] [Cross Ref]
13. Cardiovascular candidate gene polymorphisms. GeneCanvas Web site. Available at: August 2002 through August 2003.
14. Yamada Y, Izawa H, Ichihara S, et al. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. New Engl J Med. 2002;347:1916–1923. doi: 10.1056/NEJMoa021445. [PubMed] [Cross Ref]
15. Wilson M, Grant P, Kain K, Warner D, Wild C. Association between the risk of coronary artery disease in South Asians and a deletion polymorphism in glutathione S-transferase M1. Biomarkers. 2003;8(1):43–50. doi: 10.1080/1354750021000042439. [PubMed] [Cross Ref]
16. Olshan A, Li R, Pankow J, et al. Risk of atherosclerosis: interaction of smoking and glutathione S-transferase genes. Epidemiology. 2003;14(3):321–327. doi: 10.1097/00001648-200305000-00012. [PubMed] [Cross Ref]
17. Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D. GeneCards: encyclopedia for genes, proteins and diseases. GeneCards, an academic Web site of Weizmann Institute of Science, Bioinformatics Unit and Genome Center: Available at: Accessed August 2003.
18. Povey S, Wain H, Bruford E, et al. Approved Symbols. HUGO Gene Nomenclature Committee Web site. Available at: August 2003.
19. Kyker K, Limacher M. Gender differences in the presentation and symptoms of coronary artery disease. Curr Womens Health Rep. 2002;2:115–119. [PubMed]
20. Lee W, Cheung A, Cape D, Zinman B. Impact of diabetes on coronary artery disease in women and men. Diabetes Care. 2000;23:962–968. doi: 10.2337/diacare.23.7.962. [PubMed] [Cross Ref]
21. Kingwell B, Medley T, Waddell T, Cole T, Dart A, Jennings G. Large artery stiffness: structural and genetic aspects. Clin Exp Pharmacol Physiol. 2001;28:1040–1043. doi: 10.1046/j.1440-1681.2001.03580.x. [PubMed] [Cross Ref]
22. Oliveira e Silva E, Kong M, Han Z, et al. Metabolic and genetic determinants of HDL metabolism and hepatic lipase activity in normolipidemic females. Lipid Res. 1999;40:1211–1221. [PubMed]
23. Ordovas J, Cupples L, Corella D, Otvos J, Osgood D, Martinez A, et al. Association of cholesteryl ester transfer protein-TaqIB polymorphism with variations in lipoprotein subclasses and coronary heart disease risk. Arterioscler. Thromb Vasc Biol. 2000;20:1323–1329. [PubMed]
24. Kuivenhoven J, Jukema J, Zwinderman A, et al. The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. N Engl J Med. 1998;338:86–93. doi: 10.1056/NEJM199801083380203. [PubMed] [Cross Ref]
25. Herrington D, Howard T, Hawkins G, Reboussin D, Xu J, Zheng S, et al. Estrogen-receptor polymorphisms and effects of estrogen replacement on high-density lipoprotein cholesterol in women with coronary disease. N Engl J Med. 2002;346:967–974. doi: 10.1056/NEJMoa012952. [PubMed] [Cross Ref]
26. Anttila S, Kampman O, Illi A, et al. NOTCH4 gene promoter polymorphism is associated with the age of onset in schizophrenia. Psychiatr Genet. 2003;13:61–64. doi: 10.1097/00041444-200306000-00001. [PubMed] [Cross Ref]
27. Bjelland I, Tell G, Vollset S, Refsum H, Ueland P. Folate, vitamin B12, homocysteine, and the MTHFR 677C»T polymorphism in anxiety and depression: the Hordaland Homocysteine Study. Arch Gen Psychiatry. 2003;60:618–626. doi: 10.1001/archpsyc.60.6.618. [PubMed] [Cross Ref]
28. Blakely R. Physiological genomics of antidepressant targets: keeping the periphery in mind. J Neurosci. 2001;21:8319–8323. [PubMed]
29. Chumakov I, Blumenfeld M, Guerassimenko O, et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A. 2002;99(21):13675–13680. doi: 10.1073/pnas.182412499. [PubMed] [Cross Ref]
30. Emilien G, Maloteaux J, Geurts M, Hoogenberg K, Cragg S. Dopamine receptors—physiological understanding to therapeutic intervention potential. Pharmacol Ther. 1999;84:133–156. doi: 10.1016/S0163-7258(99)00029-7. [PubMed] [Cross Ref]
31. Harrison P, Owen M. Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet. 2003;361:417–419. doi: 10.1016/S0140-6736(03)12379-3. [PubMed] [Cross Ref]
32. Huang Y, Oquendo M, Friedman J, et al. Substance abuse disorder and major depression are associated with the human 5-HT1B receptor gene (HTR1B) G861C polymorphism. Neuropsychopharmacology. 2002;28:163–169. doi: 10.1038/sj.npp.1300000. [PubMed] [Cross Ref]
33. Huber J, Schneeberger C, Tempfer C. Genetic modeling of the estrogen metabolism as a risk factor of hormone-dependent disorders. Maturitas. 2002;42:1–12. doi: 10.1016/S0378-5122(02)00021-X. [PubMed] [Cross Ref]
34. Ilani T, Ben-Shacher D, Strous R, et al. A peripheral marker for schizophrenia: increased levels of D3 dopamine receptor mRNA in blood lymphocytes. Proc Natl Acad Sci USA. 2001;98(2):625–628. doi: 10.1073/pnas.021535398. [PubMed] [Cross Ref]
35. Itokawa M, Arai M, Kato S, et al. Association between a novel polymorphism in the promoter region of the neuropeptide Y gene and schizophrenia in humans. Neurosci Lett. 2003;347:202–204. doi: 10.1016/S0304-3940(03)00718-3. [PubMed] [Cross Ref]
36. Jacquet H, Raux G, Thibaut F, et al. PRODH mutations and hyperprolinemia in a subset of schizophrenic patients. Hum Mol Genet. 2002;11(19):2243–2249. doi: 10.1093/hmg/11.19.2243. [PubMed] [Cross Ref]
37. Joffe H, Cohen L. Estrogen, serotonin and mood disturbance: where is the therapeutic bridge? Biol Psychiatry. 1998;44:798–811. doi: 10.1016/S0006-3223(98)00169-3. [PubMed] [Cross Ref]
38. Jones I, Middle F, McCandless F, Coyle N, Robertson E, Brockington I. Molecular genetic studies of bipolar disorder and puerperal psychosis at two polymorphisms in the estrogen receptor alpha gene (ESR 1) Am J Med Genet. 2000;96:850–853. doi: 10.1002/1096-8628(20001204)96:6<850::AID-AJMG31>3.0.CO;2-1. [PubMed] [Cross Ref]
39. Millar JK, Wilson-Annan J, Anderson S, et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet. 2002;9:1415–1423. doi: 10.1093/hmg/9.9.1415. [PubMed] [Cross Ref]
40. Mirnics K, Middleton F, Stanwood G, Lewis D, Levitt P. Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry. 2001;6(3):293–301. doi: 10.1038/ [PubMed] [Cross Ref]
41. Ouyang W, Wang Y, Hong C, Tsai S. Estrogen receptor alpha gene polymorphisms in schizophrenia: frequency, age at onset, symptomology and prognosis. Psychiatr Genet. 2001;11:95–98. doi: 10.1097/00041444-200106000-00007. [PubMed] [Cross Ref]
42. Rybakowski J, Borkowska A, Czerski P, Dmitrzak-Weglarz M, Hauser J. The study of cytosolic phospholipase A2 gene polymorphism in schizophrenia using eye movement disturbances as an endophenotypic marker. Neuropsychobiology. 2003;47:115–119. doi: 10.1159/000070578. [PubMed] [Cross Ref]
43. Toulouse A, Rochefort D, Roussel J, Joober R, Roulean G. Molecular cloning and characterization of human RAI1, a gene associated with schizophrenia. Genomics. 2003;82:162–171. doi: 10.1016/S0888-7543(03)00101-0. [PubMed] [Cross Ref]
44. Veenstra-VanderWeele J, Anderson G, Cook E. Pharmacogenetics and the serotonin system: initial studies and future directions. Eur J Pharmacol. 2000;410:165–181. doi: 10.1016/S0014-2999(00)00814-1. [PubMed] [Cross Ref]
45. Virgos C, Martorell L, Valero J, et al. Association study of schizophrenia with polymorphisms at six candidate genes. Schizophr Res. 2001;49:65–71. doi: 10.1016/S0920-9964(00)00106-7. [PubMed] [Cross Ref]
46. Xie T, Ho S, Ramsden D. Characterization and implications of estrogenic down-regulation of human catechol-O-methyltransferase gene transcription. Mol Pharmacol. 1999;56:31–38. [PubMed]
47. Yu Y, Chen T, Wang Y, Liou Y, Hong C, Tsai S. Association analysis for neuronal nitric oxide synthase gene polymorphism with major depression and fluoxetine response. Neuropsychobiology. 2003;47:137–140. doi: 10.1159/000070582. [PubMed] [Cross Ref]
48. Zill P, Baghai T, Engel R, et al. Beta-1-adrenergic receptor gene in major depression: influence on antidepressant treatment response. Am J Med Genet. 2003;120B:85–89. doi: 10.1002/ajmg.b.20017. [PubMed] [Cross Ref]
49. Bray N, Buckland P, Williams N, et al. A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. Am J Hum Genet. 2003;73:152–161. doi: 10.1086/376578. [PubMed] [Cross Ref]
50. Caspi A, Sugden K, Moffitt T, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003;301:386–389. doi: 10.1126/science.1083968. [PubMed] [Cross Ref]
51. Wonodi I, Stine O, Mitchell B, Buchanan R, Thaker G. Association between Val108/158 Met polymorphism of the COMT gene and schizophrenia. Am J Med Genet. 2003;120B:47–50. doi: 10.1002/ajmg.b.20037. [PubMed] [Cross Ref]
52. Stefansson H, Sigurdsson E, Steinthorsdottir V, et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet. 2002;71(4):877–892. doi: 10.1086/342734. [PubMed] [Cross Ref]
53. Angold A, Costello E, Erkanli A, Worthman C. Pubertal changes in hormonal levels and depression in girls. Psychol Med. 1999;29:1043–1053. doi: 10.1017/S0033291799008946. [PubMed] [Cross Ref]
54. Quitkin F, Stewart J, McGrath P, et al. Are there differences between women's and men's antidepressant responses? Am J Psychiatry. 2002;159:1848–1854. doi: 10.1176/appi.ajp.159.11.1848. [PubMed] [Cross Ref]
55. Lerer B, Macciardi F. Pharmacogenetics of antidepressant and mood-stabilizing drugs: a review of candidate-gene studies and future research directions. Neuropsychopharmacology. 2002;5:255–275. [PubMed]
56. Kim K, Lim S, Lee S, et al. Serotonin transporter gene and anti-depressant response. Neuroreport. 2000;11:215–219. [PubMed]
57. Smeraldi E, Zanardi R, Benedetti F, Bella D, Perez J, Catalano M. Polymorphism within the serotonin transporter and antidepressant efficacy of fluvoxamine. Mol Psychiatry. 1998;3:508–511. doi: 10.1038/ [PubMed] [Cross Ref]
58. Ahokas A, Turtiainen S, Aito M. Sublingual oestrogen treatment of postnatal depression. Lancet. 1998;351:109–109. doi: 10.1016/S0140-6736(05)78152-6. [PubMed] [Cross Ref]
59. Ahokas A, Kaukoranta J, Aito M. Effect of oestradiol on postpartum depression. Psychopharmacology (Berl) 1999;146:108–110. doi: 10.1007/s002130051095. [PubMed] [Cross Ref]
60. Ahokas A, Aito M, Rimon R. Positive treatment effect of estradiol in postpartum psychosis: a pilot study. J Clin Psychiatry. 2000;61:166–169. [PubMed]
61. Sichel D, Cohen L, Robertson L, Ruttenberg A, Rosenbaum J. Prophylactic estrogen in recurrent postpartum affective disorder. Biol Psychiatry. 1995;38:814–818. doi: 10.1016/0006-3223(95)00063-1. [PubMed] [Cross Ref]
62. Schneider L, Small G, Hamilton S, Bystritsky A, Nemeroff C, Meyers B. Estrogen replacement and response to fluoxetine in a multicenter geriatric depression trial. Am J Geriatr Psychiatry. 1997;5:97–106. [PubMed]
63. Herrington D. Role of estrogen receptor-alpha in pharmacogenetics of estrogen action. Curr Opin Lipidol. 2003;14(2):145–150. doi: 10.1097/00041433-200304000-00005. [PubMed] [Cross Ref]
64. Carlsson A, Waters N, Carlsson M. Neurotransmitter interactions in schizophrenia-therapeutic implications. Eur Arch Psychiatry Clin Neurosci. 1999;249:S37–S43. [PubMed]
65. Stevens J. Schizophrenia: reproductive hormones and the brain. Am J Psychiatry. 2002;159:713–719. doi: 10.1176/appi.ajp.159.5.713. [PubMed] [Cross Ref]
66. Grigoriadis S, Seeman M. The role of estrogen in schizophrenia: implications for schizophrenia practice guidelines for women. Can J Psychiatry. 2002;47:437–442. [PubMed]
67. Preston N, Orr K, Date R, Nolan L, Castle D. Gender differences in premorbid adjustment of patients with first episode psychosis. Schizophr Res. 2002;55:285–290. doi: 10.1016/S0920-9964(01)00215-8. [PubMed] [Cross Ref]
68. Cowell P, Kostianovsky D, Gur R, Turetsky B, Gur R. Sex differences in neuroanatomical and clinical correlations in schizophrenia. Am J Psychiatry. 1996;153(6):799–805. [PubMed]
69. Kuppers E, Ivanova T, Karolczak M, Beyer C. Estrogen: a multifunctional messenger to nigrostriatal dopaminergic neurons. J. Neurocytol. 2000;29(5–6):375–385. doi: 10.1023/A:1007165307652. [PubMed] [Cross Ref]
70. Beyer C, Ivanova T, Karolczak M, Kuppers E. Cell type-specificity of nonclassical estrogen signaling in the developing mid-brain. J Steroid Biochem Mol Biol. 2002;81(4–5):319–325. doi: 10.1016/S0960-0760(02)00119-X. [PubMed] [Cross Ref]
71. Raap D, DonCarlos L, Garcia F, et al. Ovariectomy-induced increases in hypothalamic serotonin-1A receptor function in rats are prevented by estradiol. Neuroendocrinology. 2002;76(6):348–356. doi: 10.1159/000067582. [PubMed] [Cross Ref]
72. Arranz M, Kerwin R. Neurotransmitter related genes and antipsychotoic response: pharmacogenetics meets psychiatric treatment. Ann Med. 2000;32:128–133. doi: 10.3109/07853890009011762. [PubMed] [Cross Ref]
73. Larsen T, Friis S, Haahr U, et al. Early detection and intervention in first-episode schizophrenia: a critical review. Acta Psychiatr Scand. 2001;103:323–324. doi: 10.1034/j.1600-0447.2001.00131.x. [PubMed] [Cross Ref]
74. Ichikawa J, Meltzer H. Relationship between dopaminergic and seratonergic neuronal activity in the frontal cortex and the action of typical and atypical antipsychotic drugs. Eur Arch Psychiatry Clin Neurosci. 1999;249(suppl 4):90–98. [PubMed]
75. Arranz M, Munro J, Birkett J, et al. Pharmacogenetic prediction of clozapine response. Lancet. 2000;355:1615–1616. doi: 10.1016/S0140-6736(00)02221-2. [PubMed] [Cross Ref]
76. Zhao H, Pfeiffer R, Gail M. Haplotype analysis in population genetics and association studies. Pharmacogenomics. 2003;4:171–178. doi: 10.1517/phgs. [PubMed] [Cross Ref]
77. Garner C, Slatkin M. On selecting markers for association studies: patterns of linkage disequilibrium between two and three diallelic loci. Genet Epidemiol. 2003;24(1):57–67. doi: 10.1002/gepi.10217. [PubMed] [Cross Ref]

Articles from AAPS PharmSci are provided here courtesy of American Association of Pharmaceutical Scientists