Search tips
Search criteria 


Logo of aapspharmspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
AAPS PharmSciTech. 2006 March; 7(1): E168–E174.
Published online 2006 March 17. doi:  10.1208/pt070124
PMCID: PMC2750731

Use of hydrophilic natural gums in formulation of sustained-release matrix tablets of tramadol hydrochloride


The objective of this work was to develop matrix sustained-release tablets of highly water-soluble tramadol HCl using natural gums (xanthan [X gum] and guar [G gum]) as cost-effective, nontoxic, easily available, and suitable hydrophilic matrix systems compared with the extensively investigated hydrophilic matrices (ie, hydroxypropyl methylcellulose [HPMC]/carboxymethyl cellulose [CMC] with respect to in vitro drug release rate) and hydration rate of the polymers. Matrix tablets of tramadol (dose 100 mg) were produced by direct compression method. Different ratios, of 100[ratio]0, 80[ratio]20, 60[ratio]40, 20[ratio]80, 0[ratio]100 of G gum (or X):HPMC, X gum:G gum, and triple mixture of these polymers (G gum, X gum, HPMC) were applied. After evaluation of physical characteristics of tablets, the dissolution test was, performed in the phosphate buffer media (pH 7.4) up to 8 hours. Tablets with only X had the highest mean dissolution time (MDT), the least dissolution efficiency (DE8%), and released the drug following a zero-order model via swelling, diffusion, and erosion mechanisms. Guar gum alone could not efficiently control the drug release, while X and all combinations of natural gums with HPMC could retard tramadol HCl release. However, according to the similarity factor (f2), pure HPMC and H8G2 were the most similar formulations to Topalgic-LP as the reference standard.

Keywords: natural gums, xanthan, guar gum, tramadol, sustained-release

Full Text

The Full Text of this article is available as a PDF (208K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Altman RA, Hochberg MC, Moskowitz RW, Schnitzer TJ. Recommendations for the medical management of osteoarthritis of the hip and knee: 2000 update. Arthritis Rheum. 2000;43:1905–1915. doi: 10.1002/1529-0131(200009)43:9<1905::AID-ANR1>3.0.CO;2-P. [PubMed] [Cross Ref]
2. Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet. 2004;43:879–923. doi: 10.2165/00003088-200443130-00004. [PubMed] [Cross Ref]
3. Medical Economics Staff . Physicians’ Desk Reference. Greenwood Village, CO: Thomson Micromedex; 2003.
4. Raber M, Hoffman S, Junge K, Momberger H, Kuhn D. Analgesic efficacy and tolerability of tramadol 100 mg sustained release capsules in patients with moderate to severe chronic low back pain. Clin Drug Invest. 1999;17:415–423. doi: 10.2165/00044011-199917060-00001. [Cross Ref]
5. Malonne H, Coffiner M, Fontaine D, et al. Long-term tolerability of tramadol LP, a new once-daily formulation, in patients with osteoarthritis or low back pain. J Clin Pharm Ther. 2005;30:113–120. doi: 10.1111/j.1365-2710.2004.00624.x. [PubMed] [Cross Ref]
6. Malonne H, Coffiner M, Sonet B, Sereno A, Vanderbist F. Efficacy and tolerability of sustained-release tramadol in the treatment of symptomatic osteoarthritis of the hip or knee: a multicenter, randomized, double-blind, placebo-controlled study. Clin Ther. 2004;26:1774–1782. doi: 10.1016/j.clinthera.2004.11.005. [PubMed] [Cross Ref]
7. Babul N, Noveck R, Chipman H, Roth SH, Gana T, Albert K. Efficacy and safety of extended-release, once-daily tramadol in chronic pain: a randomized 12-week clinical trial in osteoarthritis of the knee. J Pain Symptom Manage. 2004;28:59–71. doi: 10.1016/j.jpainsymman.2003.11.006. [PubMed] [Cross Ref]
8. Tiwari SB, Murthy TK, Pai MR, Mehta PR, Chowdary PB. Controlled release formulation of tramadol hydrochloride using hydrophilic and hydrophobic matrix system. AAPS PharmSciTech. 2003;4:E31–E31. doi: 10.1208/pt040331. [PMC free article] [PubMed] [Cross Ref]
9. Obaidat AA, Obaidat RM. Controlled release of tramadol hydrochloride from matrices prepared using glyceryl behenate. Eur J Pharm Biopharm. 2001;52:231–235. doi: 10.1016/S0939-6411(01)00173-4. [PubMed] [Cross Ref]
10. Malonne H, Fontaine J, Moes A. In vitro/in vivo characterization of a tramadol HCl depot system composed of monoolein and water. Biol Pharm Bull. 2000;23:627–631. [PubMed]
11. Zhang ZY, Ping QN, Xiao B. Microencapsulation and characterization of tramadol-resin complexes. J Control Release. 2000;66:107–113. doi: 10.1016/S0168-3659(99)00273-4. [PubMed] [Cross Ref]
12. Krishnaiah YSR, Karthikeyan RS, Satyanarayana V. A three-layer guar gum matrix tablet for oral controlled delivery of highly soluble metoprolol tartrate. Int J Pharm. 2002;241:353–366. doi: 10.1016/S0378-5173(02)00273-9. [PubMed] [Cross Ref]
13. Krishnaiah YS, Karthikeyan RS, Gouri Sankar V, Satyanarayana V. Three-layer guar gum matrix tablet formulations for oral controlled delivery of highly soluble trimetazidine dihydrochloride. J Control Release. 2002;81:45–56. doi: 10.1016/S0168-3659(02)00031-7. [PubMed] [Cross Ref]
14. Pai VB, Khan SA. Gelation and rheology of xanthan/enzyme-modified guar blends. Carbohydrate Polym. 2002;49:207–216. doi: 10.1016/S0144-8617(01)00328-9. [Cross Ref]
15. Castro IA, Tirapegui J, Benedicto ML. Effects of diet supplementation with 3 soluble polysaccharides on serum lipid levels of hypercholesterolemic rats. Food Chem. 2003;80:323–330. doi: 10.1016/S0308-8146(02)00267-4. [Cross Ref]
16. Durig T, Fassihi R. Guar-based monolithic matrix systems: effect of ionizable and nonionizable substances and exipients on gel dynamics and release kinetics. J Control Release. 2002;80:45–56. doi: 10.1016/S0168-3659(01)00546-6. [PubMed] [Cross Ref]
17. Costa P. An alternative method to the evaluation of similarity factor in dissolution testing. Int J Pharm. 2001;220:77–83. doi: 10.1016/S0378-5173(01)00651-2. [PubMed] [Cross Ref]
18. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35. doi: 10.1016/0378-5173(83)90064-9. [Cross Ref]
19. Costa P, Manuel J. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–133. doi: 10.1016/S0928-0987(01)00095-1. [PubMed] [Cross Ref]
20. Banakar UV. Pharmaceutical Dissolution Testing. New York, NY: Marcel Dekker Inc; 1992.
21. Gohel MC, Panchal MK. Novel use of similarity factors f2 and sd for the development of diltiazem HCl modified-release tablets using a 32 factorial design. Drug Dev Ind Pharm. 2002;28:77–87. doi: 10.1081/DDC-120001488. [PubMed] [Cross Ref]
22. FDA Guidance for Industry. Dissolution Testing of Immediate and Modified Release of Solid Oral Dosage Forms. Rockville, MD: National Press Office. FDA Guidance for Industry No. 32.
23. Bhalla HL, Sanzgiri YD. An improved controlled release tablet of sulbutamol sulphate. Indian J Pharm Sci. 1987;49:22–25.
24. Salsa T, Veiga G, Pina ME. Oral controlled-release dosage forms. I. cellulose ether polymers in hydrophilic matrices. Drug Dev Ind Pharm. 1997;23:292–938. doi: 10.3109/03639049709148697. [Cross Ref]
25. Aulton ME. Pharmaceutics: The Science of Dosage Form Design. London, UK: Churchill Livingstone; 2002.
26. Varshosaz J, Tavakoli N, Eram SA. Use of natural gums and cellulose derivatives in production of sustained release metoprolol tablets. Drug Deliv. In press. [PubMed]
27. Lu MF, Woodward L, Borodkin S. Xanthan gum and alginate based controlled release theophyllin formulations. Drug Dev Ind Pharm. 1991;17:1987–2004. doi: 10.3109/03639049109048063. [Cross Ref]
28. Cox PJ, Khan KA, Munday DL, Sujja-areevath J. Development and evaluation of a multiple-unit oral sustained-release dosage form for S(+)-ibuprofen: preparation and release, kinetics. Int J Pharm. 1999;193:73–84. doi: 10.1016/S0378-5173(99)00320-8. [PubMed] [Cross Ref]
29. Munday DL, Cox PJ. Compressed xanthan and karaya gum matrices: hydration, erosion and drug release mechanisms. Int J Pharm. 2000;203:179–192. doi: 10.1016/S0378-5173(00)00444-0. [PubMed] [Cross Ref]
30. Ughini F, Andreazza IF, Ganter JLMS, Bresolin TMB. Evaluation of xanthan and highly substituted galactomannan from M Scabrella as a sustained release matrix. Int J Pharm. 2004;271:197–205. doi: 10.1016/j.ijpharm.2003.11.011. [PubMed] [Cross Ref]
31. Al-Saidian SM, Krishnaiah YSR, Patro SS, Satyanaryana V. In vitro and in vivo evaluation of guar gum matrix tablets for oral controlled release of water-soluble diltiazem hydrochloride. AAPS PharmSciTech. 2005;6:E5–E5. [PMC free article] [PubMed]
32. Altaf SA, Yu K, Parasrampuria J, Friend DR. Guar gum-based sustained release diltiazem. Pharm Res. 1998;15:1196–1201. doi: 10.1023/A:1011931622536. [PubMed] [Cross Ref]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists