PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of aapspharmspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
 
AAPS PharmSciTech. 2007 October; 8(4): 298–304.
Published online 2007 December 28. doi:  10.1208/pt0804117
PMCID: PMC2750703

Effect of sampling procedures of release testing on drug release and scale-up production feasibility of multiple-unit dextromethorphan resinate tablets: A technical note

Summary and Conclusion

In conclusion, multiple-unit DMP resinate tablets showed a good feasibility for scale-up production for industrial manufacturing. Good physical properties and continuous drug release of the resinate tablets in simulated GI conditions were obtained. Moreover, the variation of drug release from the resinate tablets can be accepted. This study also suggests that a high level of sampling volume and frequency should be conducted in the sampling procedure when using a fixed-volume dissolution apparatus in order to obtain the complete drug release of the resinates.

Keywords: Dextromethorphan resinate, sampling procedure, tablets, production

Full Text

The Full Text of this article is available as a PDF (467K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Bechgaard H, Nielsen GH. Controlled-release multiple-units and single-unit doses. Drug Dev Ind Pharm. 1978;4:53–67. doi: 10.3109/03639047809055639. [Cross Ref]
2. Borodkin S, Sundberg DP. Polycarboxylic acid ion-exchange resin adsorbates for taste coverage in chewable tablets. J Pharm Sci. 1971;60:1523–1527. doi: 10.1002/jps.2600601018. [PubMed] [Cross Ref]
3. Sriwongjanya M, Bodmeier R. Entrapment of drug-loaded ion-exchange particles within polymer microparticles. Int J Pharm. 1997;158:29–38. doi: 10.1016/S0378-5173(97)00212-3. [Cross Ref]
4. Cuna M, Jato JLV, Torres D. Controlled-release liquid suspensions based on ion-exchange particles entrapped within acrylic microcapsules. Int J Pharm. 2000;199:151–158. doi: 10.1016/S0378-5173(00)00379-3. [PubMed] [Cross Ref]
5. Ichikawa H, Fujioka K, Adeyeye MC, Fukumori Y. Use of ion-exchange resins to prepare 100-µm-sized microcapsules with prolonged drug-release by the Wurster process. Int J Pharm. 2001;216:67–76. doi: 10.1016/S0378-5173(01)00573-7. [PubMed] [Cross Ref]
6. Pongjanyakul T, Priprem A, Chitropas P, Puttipipatkhachorn S. Effect of polysulfonate resins and direct compression fillers on multiple-unit sustained-release dextromethorphan resinate tablets. AAPS PharmSciTech. 2005;6:E190–E197. doi: 10.1208/pt060228. [PMC free article] [PubMed] [Cross Ref]
7. Borodkin S. Ion exchange resins and sustained release. In: Swarbrick J, Boylan JC, editors. Encyclopedia of Pharmaceutical Technology. vol. 8. New York, NY: Marcel Dekker Inc; 1993. pp. 203–216.
8. Notari RE. Biopharmaceutics and Clinical Pharmacokinetics. New York, NY; Basel, Switzerland: Marcel Dekker Inc; 1987. pp. 130–218.
9. Raghunathan Y, Amsel L, Hinsvark O, Bryant W. Sustained-release drug delivery system. I. Coated ion-exchange resin system for phenylpropanolamine and other drugs. J Pharm Sci. 1981;70:379–384. doi: 10.1002/jps.2600700409. [PubMed] [Cross Ref]
10. Ogger KE, Noory C, Gabay J, Shah VP, Skelly JP. Dissolution profiles of resin-based oral suspensions. Pharm Technol. 1991;9:84–91.
11. Burke GM, Mendes RW, Jambhekar SS. Investigation of the application of ion exchange resins as a sustained release drug delivery system for propranolol hydrochloride. Drug Dev Ind Pharm. 1986;12:713–732. doi: 10.3109/03639048609043487. [Cross Ref]
12. Irwin WJ, Belaid KA, Alpar HO. Drug-delivery by ion-exchange. III. Interaction of ester pro-drugs of propranolol with cationic exchange resins. Drug Dev Ind Pharm. 1987;13:2047–2066. doi: 10.3109/03639048709068706. [Cross Ref]
13. Sriwongjanya M, Bodmeier R. Effect of ion exchange resins on the drug release from matrix tablets. Eur J Pharm Biopharm. 1998;46:321–327. doi: 10.1016/S0939-6411(98)00056-3. [PubMed] [Cross Ref]
14. Akkaramongkolpom P, Ngawhirunpat T. Dual ambroxal and chlorpheniramine resinate as an alternative carrier in concurrent resinate administration. Pharmazie. 2003;58:195–199. [PubMed]
15. Pongjanyakul T, Prakongpan S, Rungsardthong U, Chancham P, Priprem A. Characteristics and in vitro release of dextromethorphan resinates. Powder Technol. 2005;152:100–106. doi: 10.1016/j.powtec.2005.01.017. [Cross Ref]
16. García-Encina G, Torres D, Seijo B, Vila-Jato JL. In vivo evaluation of nylon-coated diclofenac-resin complexes. J Control Release. 1993;23:201–207. doi: 10.1016/0168-3659(93)90001-L. [Cross Ref]
17. Torres D, García-Encina G, Seijo B, Vila-Jato JL. Biopharmaceutical evaluation of microencapsulated ion-exchange resins containing diclofenac. Eur J Pharm Biopharm. 1995;41:127–131.
18. Bi Y, Sunada H, Yonezawa Y, Danjo K, Otsuka A, Iida K. Preparation and evaluation of a compressed tablet rapidly disintegrating in the oral cavity. Chem Pharm Bull (Tokyo) 1996;44:2121–2127. [PubMed]
19. Mitrevej A, Sinchaipanid N, Faroongsarng D. Spray-dried rice starch: comparative evaluation of direct compression fillers. Drug Dev Ind Pharm. 1996;22:587–594. doi: 10.3109/03639049609063212. [Cross Ref]
20. Sunada H, Bi Y. Preparation, evaluation and optimization of rapidly disintegrating tablets. Powder Technol. 2002;122:188–198. doi: 10.1016/S0032-5910(01)00415-6. [Cross Ref]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists