Search tips
Search criteria 


Logo of aapspharmspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
AAPS PharmSciTech. 2007 October; 8(4): 221.
Published online 2007 December 14. doi:  10.1208/pt0804108
PMCID: PMC2750694

Development of prednisone: Polyethylene glycol 6000 fast-release tablets from solid dispersions: Solid-state characterization, dissolution behavior, and formulation parameters


The aim of the current study was to design oral fast-release polymeric tablets of prednisone and to optimize the drug dissolution profile by modifying the carrier concentration. Solid dispersions were prepared by the solvent evaporation method at different drug:polymer ratios (wt/wt). The physical state and drug:carrier interactions were analyzed by X-ray diffraction, infrared spectroscopy, and scanning electron microscopy. The dissolution rate of prednisone from solid dispersions was markedly enhanced by increasing the polymer concentration. The tablets were prepared from solid dispersion systems using polyethylene glycol (PEG) 6000 as a carrier at low and high concentration. The results showed that PEG 6000-based tablets exhibited a significantly higher prednisone dissolution (80% within 30 minutes) than did conventional tablets prepared without PEG 6000 (<25% within 30 minutes). In addition, the good disintegration and very good dissolution performance of the developed tablets without the addition of superdisintegrant highlighted the suitability of these formulated dosage forms. The stability studies performed in normal and accelerated conditions during 12 months showed that prednisone exhibited high stability in PEG 6000 solid dispersion powders and tablets. The X-ray diffraction showed that the degree of crystallinity of prednisone in solid dispersions decreased when the ratio of the polymer increased, suggesting that the drug is present inside the samples in different physical states. The Fourier transform infrared spectroscopic studies showed the stability of prednisone and the absence of well-defined drug:polymer interactions. Scanning electron microscopy images showed a novel morphology of the dispersed systems in comparison with the pure components.

Keywords: Solid dispersions, PEG 6000, prednisone, dissolution rate, tablets

Full Text

The Full Text of this article is available as a PDF (596K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Dale DC, Petersdorf RG. Corticosteroids and infectious diseases. Med Clin North Am. 1973;57:1277–1287. [PubMed]
2. Frey BM, Frey F. Clinical pharmacokinetics of prednisone and prednisolone. Clin Pharmacokinet. 1990;19:126–146. doi: 10.2165/00003088-199019020-00003. [PubMed] [Cross Ref]
3. Saidi RF, Dudrick PS, Goldman MH. Colorectal cancer after renal transplantation. Transplant Proc. 2003;35:1410–1412. doi: 10.1016/S0041-1345(03)00478-0. [PubMed] [Cross Ref]
4. Marzocchi-Machado CM, Russo EM, Alves CM, Polizello AC, Azzolini AE, Lucisano-Valim YM. Effect of low-dose prednisone in vivo on the ability of complement receptor to mediate an oxidative burst in rat neutrophils. Immunopharmacology. 2000;49:247–254. doi: 10.1016/S0162-3109(00)00204-6. [PubMed] [Cross Ref]
5. Horter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 1997;25:3–14. doi: 10.1016/S0169-409X(96)00487-5. [PubMed] [Cross Ref]
6. Dastmalchi S, Garjani A, Maleki N, et al. Enhancing dissolution, serum concentrations and hypoglycemic effect of glibenclamide using solvent deposition technique. J Pharm Pharm Sci. 2005;8:175–181. [PubMed]
7. Modi A, Tayade P. Enhancement of dissolution profile by solid dispersion (kneading) technique.AAPS PharmSciTech [serial online]. 2006;7:E68. [PMC free article] [PubMed]
8. Okimoto K, Miyake M, Ibuki R, Yasumura M, Ohnishi N, Nakai T. Dissolution mechanism and rate of solid dispersion particles of nilvadipine with hydroxypropylmethylcellulose. Int J Pharm. 1997;159:85–93. doi: 10.1016/S0378-5173(97)00274-3. [Cross Ref]
9. Yamashita K, Nakate T, Okimoto K, et al. Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int J Pharm. 2003;267:79–91. doi: 10.1016/j.ijpharm.2003.07.010. [PubMed] [Cross Ref]
10. Fini A, Moyano JR, Ginés JM, Perez-Martinez JI, Rabasco AM. Diclofenac salts, II: solid dispersions in PEG6000 and Gelucire 50/13. Eur J Pharm Biopharm. 2005;60:99–111. doi: 10.1016/j.ejpb.2004.11.005. [PubMed] [Cross Ref]
11. Wang X, Michoel A, Van den Mooter G. Study of the phase behavior of polyethylene glycol 6000-itraconazole solid dispersions using DSC. Int J Pharm. 2004;272:181–187. doi: 10.1016/j.ijpharm.2003.11.026. [PubMed] [Cross Ref]
12. Ahuja N, Prakash-Katare O, Singh B. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. Eur J Pharm Biopharm. 2007;65:26–38. doi: 10.1016/j.ejpb.2006.07.007. [PubMed] [Cross Ref]
13. Serajuddin ATM. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems and recent breakthroughs. J Pharm Sci. 1999;88:1058–1066. doi: 10.1021/js980403l. [PubMed] [Cross Ref]
14. Allen LV, Yanchick VA, Maness DD. Dissolution rates of corticosteroids utilizing sugar glass dispersions. J Pharm Sci. 1977;66:494–497. doi: 10.1002/jps.2600660409. [PubMed] [Cross Ref]
15. Allen LV, Levinson RS, Martono DD. Dissolution rates of hydrocortisone and prednisone utilizing sugar solid dispersion systems in tablet form. J Pharm Sci. 1978;67:979–981. doi: 10.1002/jps.2600670729. [PubMed] [Cross Ref]
16. Chiou WL, Chen SJ, Athanikar N. Enhancement of dissolution rates of poorly water-soluble drugs by crystallization in aqueous surfactant solutions, I: sulfathiazole, prednisone, and chloramphenicol. J Pharm Sci. 1976;65:1702–1704. doi: 10.1002/jps.2600651137. [PubMed] [Cross Ref]
17. Landín M, Martínez-Pacheco R, Gómez-Amoza JL, Souto C, Concheiro A, Rowe RC. Influence of microcrystalline cellulose source and batch variation on the tabletting behavior and stability of prednisone formulations. Int J Pharm. 1993;91:143–149. doi: 10.1016/0378-5173(93)90333-B. [Cross Ref]
18. Ferrari F, Bertoni M, Bonferoni C, Rossi S, Caramella C, Bolhius G. Dissolution enhancement of an insoluble drug by physical mixture with a superdisintegrant: optimization with a simple lattice design. Pharm Dev Technol. 1996;1:159–164. doi: 10.3109/10837459609029890. [PubMed] [Cross Ref]
19. Osoba D, Tannock IF, Scott Ernst D, Neville AJ. Health-related quality of life in men with metastatic prostate cancer treated with prednisone alone or mitoxantrone and prednisone. J Clin Oncol. 1999;17:1654–1663. [PubMed]
20. Higuchi T. Mechanism of sustained-action medication: theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–1149. doi: 10.1002/jps.2600521210. [PubMed] [Cross Ref]
21. Hixson AW, Crowell JH. Dependence of reaction velocity upon surface and agitation. Ind Eng Chem. 1931;23:923–930. doi: 10.1021/ie50260a018. [Cross Ref]
22. Wagner JG. Interpretation of percent dissolved-time plots derived from in vitro testing of conventional tablets and capsules. J Pharm Sci. 1969;58:1253–1257. doi: 10.1002/jps.2600581021. [PubMed] [Cross Ref]
23. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60. doi: 10.1016/S0939-6411(00)00076-X. [PubMed] [Cross Ref]
24. Özkan Y, Doğanay N, Dikmen N, Işimer A. Enhanced release of solid dispersions of etodolac in polyethylene glycol. Farmaco. 2000;55:433–438. doi: 10.1016/S0014-827X(00)00062-8. [PubMed] [Cross Ref]
25. Lin CW, Cham TM. Effect of particle size on the available surface area of nifedipine from nifedipine-polyethylene glycol 6000 solid dispersions. Int J Pharm. 1996;127:261–272. doi: 10.1016/0378-5173(95)04245-8. [Cross Ref]
26. Parrot EL. Pharmaceutical Technology. Minneapolis, MN: Burgess Publishing Company; 1971.
27. Nokhodchi A, Maghsoodi M, Hassan-Zadeh D, Barzegar-Jalali M. Preparation of agglomerated crystals for improving flowability and compactibility of poorly flowable and compactible drugs and excipients. Powder Technol. 2007;175:73–81. doi: 10.1016/j.powtec.2007.01.030. [Cross Ref]
28. Perissutti B, Rubessa F, Moneghini M, Voinovich D. Formulation design of carbamazepine fast-release tablets prepared by melt granulation technique. Int J Pharm. 2003;256:53–63. doi: 10.1016/S0378-5173(03)00062-0. [PubMed] [Cross Ref]
29. Walker GM, Holland CR, Ahmad MMN, Craig DQM. Influence of process parameters on fluidised hot-melt granulation and tablet pressing of pharmaceutical powders. Chem Eng Sci. 2005;60:3867–3877. doi: 10.1016/j.ces.2005.02.007. [Cross Ref]
30. Kristensen J, Hansen VW. Investigation of a 2-step agglomeration process performed in a rotary processor using polyethylene glycol solutions as the primary binder liquid.AAPS PharmSciTech [serial online]. 2006;7:E22. [PubMed]
31. Yeole PG, Galgatte UC, Babla IB, Nakhat PD. Design and evaluation of Xanthan gum-based sustained release matrix tablets of diclofenac sodium. Indian J Pharm Sci. 2006;68:185–189. doi: 10.4103/0250-474X.25712. [Cross Ref]
32. Corveleyn S, Remon JP. Formulation and production of rapidly disintegrating tablets by lyophilization using hydrochlorothiazide as a model drug. Int J Pharm. 1997;152:215–225. doi: 10.1016/S0378-5173(97)00092-6. [Cross Ref]
33. Holgado MA, Caraballo I, Alvarez-Fuentes J, Fernández-Hervás MJ, Fernández-Arévalo M, Rabasco AM. Influence of diluents and manufacturing method on the in vitro dissolution of carteolol hydrochloride matrix tablets. Int J Pharm. 1995;118:151–160. doi: 10.1016/0378-5173(94)00317-X. [Cross Ref]
34. Shangraw R, Mitrevej A, Shah M. A new era of tablet disintegrants. Pharm Technol. 1980;4:49–57.
35. Gohel MC, Parikh RK, Brahmbhatt BK, Shah AR. Improving the tablet characteristics and dissolution profile of ibuprofen by using a novel coprocessed superdisintegrant: a technical note.AAPS PharmSciTech [serial online]. 2007;8:E13. [PMC free article] [PubMed]
36. Zhao N, Augsburger LL. Functionality comparison of 3 classes of superdisintegrants in promoting aspirin tablet disintegration and dissolution. AAPS PharmSciTech [serial online] 2005;6:E634–E640. doi: 10.1208/pt060479. [PMC free article] [PubMed] [Cross Ref]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists