Search tips
Search criteria 


Logo of aapspharmspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
AAPS PharmSciTech. 2003 September; 4(3): 124–135.
Published online 2003 April 21. doi:  10.1208/pt040345
PMCID: PMC2750638

Effect of hydroxypropyl beta cyclodextrin complexation on aqueous solubility, stability, and corneal permeation of acyl ester prodrugs of ganciclovir


The purpose of the study was to investigate the effect of hydroxypropyl beta cyclodextrin (HPβCD) on aqueous solubility, stability, and in vitro corneal permeation of acyl ester prodrugs of ganciclovir (GCV). Aqueous solubility and stability of acyl ester prodrugs of Ganciclovir (GCV) were evaluated in pH 7.4 isotonic phosphate buffer solution (IPBS) in the presence and absence of HPβCD. Butyryl cholinesterase-mediated enzymatic hydrolysis of the GCV prodrugs was studied using various percentage w/v HPβCD. In vitro corneal permeation of GCV and its prodrugs (with and without 5% HPβCD) across isolated rabbit cornea was studied using side-by-side diffusion cells. HPβCD-prodrug complexation was of the AL type with values for complexation constants ranging between 12 and 108 M−1. Considerable improvement in chemical and enzymatic stability of the GCV prodrugs was observed in the presence of HPβCD. The stabilizing effect of HPβCD was found to depend on the degree of complexation and the degradation rate of prodrug within the complex. Five percent w/v HPβCD was found to enhance the corneal permeation of only the most lipophilic prodrug GCV dibutyrate (2.5-fold compared with 0% HPβCD). All other prodrugs showed little or no difference in transport in the presence of 5% w/v HPβCD. Agitation in the donor chamber largely influenced the transport kinetics of GCV dibutyrate across cornea. Results indicate the presence of an unstirred aqueous diffusion layer at the corneal surface that restricts the transport of the highly lipophilic GCV dibutyrate prodrug. HPβCD improves corneal permeation by solubilizing the hydrophobic prodrug and delivering it across the mucin layer at the corneal surface.

Keywords: hydroxypropyl beta cyclodextrin, cornea, transport, prodrugs, aqueous diffusion layer

Full Text

The Full Text of this article is available as a PDF (460K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Snoeck R, Schols D, Andrei G, Neyts J, Clercq E. Antiviral activity of anti-cytomegalovirus agents (HPMPC, HPMPA) assessed by a flow cytometric method and DNA hydridization technique. Antiviral Res. 1991;16:1–9. doi: 10.1016/0166-3542(91)90053-T. [PubMed] [Cross Ref]
2. Smee DF, Martin JC, Verheyden JP, Matthews TR. Antiherpesvirus activity of the acyclic nucleoside 9-(1,3-dihydroxy-2-propoxymethyl)guanine. Antimicrob Agents Chemother. 1983;23:676–682. [PMC free article] [PubMed]
3. Naito T, Nitta K, Kinouchi Y, Shiota H, Mimura Y. Effects of 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG) eye drops and cyclosporine eye drops in the treatment of herpetic stromal keratitis in rabbits. Curr Eye Res. 1991;10:201–203. doi: 10.3109/02713689109020380. [PubMed] [Cross Ref]
4. Hoh HB, Hurley C, Claoue C, Viswalingham M, Easty DL, Goldschmidt P, Collum LM. Randomised trial of ganciclovir and acyclovir in the treatment of herpes simplex dendritic keratitis: a multicentre study. Br J Ophthalmol. 1996;80:140–143. doi: 10.1136/bjo.80.2.140. [PMC free article] [PubMed] [Cross Ref]
5. Spector SA, McKinley GF, Lalezari JP, Samo T, Andruczk R, Follansbee S, Sparti PD, Havlir DV, Simpson G, Buhles W, Wong R, Stempien M. Oral ganciclovir for the prevention of cytomegalovirus disease in persons with AIDS. Roche Cooperative Oral Ganciclovir Study Group. N Engl J Med. 1996;334:1491–1497. doi: 10.1056/NEJM199606063342302. [PubMed] [Cross Ref]
6. Tirucherai GS, Dias C, Mitra AK. Corneal Permeation of Ganciclovir: Mechanism of Ganciclovir Permeation Enhancement by Acyl Ester Prodrug Design. J Ocul Pharmacol Ther. 2002;18:535–548. doi: 10.1089/108076802321021081. [PubMed] [Cross Ref]
7. Macha S, Mitra AK. Ocular disposition of ganciclovir and its monoester prodrugs following intravitreal administration using microdialysis. Drug Metab Dispos. 2002;30:670–675. doi: 10.1124/dmd.30.6.670. [PubMed] [Cross Ref]
8. Yaksh TL, Jang JD, Nishiuchi Y, Braun KP, Ro SG, Goodman M. The utility of 2-hydroxypropyl-beta-cyclodextrin as a vehicle for the intracerebral and intrathecal administration of drugs. Life Sci. 1991;48:623–633. doi: 10.1016/0024-3205(91)90537-L. [PubMed] [Cross Ref]
9. Usayapant A, Karara AH, Narurkar MM. Effect of 2-hydroxypropyl-beta-cyclodextrin on the ocular absorption of dexamethasone and dexamethasone acetate. Pharm Res. 1991;8:1495–1499. doi: 10.1023/A:1015838215268. [PubMed] [Cross Ref]
10. Loftsson T, Frithriksdottir H, Thorisdottir S, Stefansson E, Sigurthardottir AM, Guthmundsson O, Sigthorsson T. 2-hydroxypropyl-beta-cyclodextrin in topical carbonic anhydrase inhibitor formulations. Eur J Pharm Sci. 1994;1:175–180. doi: 10.1016/0928-0987(94)90001-9. [Cross Ref]
11. Jarho P, Urtti A, Jarvinen K, Pate DW, Jarvinen T. Hydroxypropyl-beta-cyclodextrin increases aqueous solubility and stability of anandamide. Life Sci. 1996;58:181–185. doi: 10.1016/0024-3205(96)00024-0. [PubMed] [Cross Ref]
12. Loftsson T, Jarvinen T. Cyclodextrins in ophthalmic drug delivery. Adv Drug Deliv Res. 1993;36:59–79. doi: 10.1016/S0169-409X(98)00055-6. [PubMed] [Cross Ref]
13. Loftsson T, Stefansson E, Kristensson JK, Fridriksdottir H, Sverrisson T, Gudmondsdottir G, Thorisdottir S. Topically effective acetazolamide drop solution in man. Pharm Sci. 1996;6:277–279.
14. Gao H, Mitra AK. Regioselective synthesis of various prodrugs of ganciclovir. Tetrahedron Lett. 2000;41:1131–1136. doi: 10.1016/S0040-4039(99)02280-7. [Cross Ref]
15. Higuchi T, Connors KA. Advances in Analytical Chemistry and Instrumentation. New York: Reilly CN; 1965. Phase-Solubility Techniques; pp. 117–212.
16. Tak RV, Pal D, Gao H, Dey S, Mitra AK. Transport of acyclovir ester prodrugs through rabbit cornea and SIRC-rabbit corneal epithelial cell line. J Pharm Sci. 2001;90:1505–1515. doi: 10.1002/jps.1101. [PubMed] [Cross Ref]
17. Cho MJ, Chen FJ, Huczek DL. Effects of inclusion complexation on the transepithelial transport of a lipophilic substance in vitro. Pharm Res. 1995;12:560–564. doi: 10.1023/A:1016258114283. [PubMed] [Cross Ref]
18. Albers E, Muller BW. Complexation of steroid hormones with cyclodextrin derivatives: substituent effects of the guest molecule on solubility and stability in aqueous solution. J Pharm Sci. 1992;81:756–761. doi: 10.1002/jps.2600810808. [PubMed] [Cross Ref]
19. Dias CS, Anand BS, Mitra AK. Effect of mono- and diacylation on the ocular disposition of ganciclovir: physicochemical properties, ocular bioreversion, and antiviral activity of short chain ester prodrugs. J Pharm Sci. 2002;91:660–668. doi: 10.1002/jps.10072. [PubMed] [Cross Ref]
20. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85:1017–1025. doi: 10.1021/js950534b. [PubMed] [Cross Ref]
21. Mielcarek J. Photochemical stability of the inclusion complexes formed by modified 1,4-dihydropyridine derivatives with beta-cyclodextrin. J Pharm Biomed Anal. 1997;15:681–686. doi: 10.1016/S0731-7085(96)01900-0. [PubMed] [Cross Ref]
22. Narurkar MM, Mitra AK. Prodrugs of 5-iodo-2′-deoxyuridine for enhanced ocular transport. Pharm Res. 1989;6:887–891. doi: 10.1023/A:1015968724007. [PubMed] [Cross Ref]
23. Jarho P, Jarvinen K, Urtti A, Stella VJ, Jarvinen T. Modified beta-cyclodextrin (SBE7-beta-CyD) with viscous vehicle improves the ocular delivery and tolerability of pilocarpine prodrug in rabbits. J Pharm Pharmacol. 1996;48:263–269. [PubMed]
24. Suhonen P, Jarvinen T, Lehmussaari K, Reunamaki T, Urtti A. Ocular absorption and irritation of pilocarpine prodrug is modified with buffer, polymer, and cyclodextrin in the eyedrop. Pharm Res. 1995;12:529–533. doi: 10.1023/A:1016297728396. [PubMed] [Cross Ref]
25. Pauletti GM, Gangwar S, Wang B, Borchardt RT. Esterasesensitive cyclic prodrugs of peptides: evaluation of a phenylpropionic acid promoiety in a model hexapeptide. Pharm Res. 1997;14:11–17. doi: 10.1023/A:1012091014242. [PubMed] [Cross Ref]
26. Bodor NS, Huang MJ, Watts JD. Theoretical studies on the structures of natural and alkylated cyclodextrins. J Pharm Sci. 1995;84:330–336. doi: 10.1002/jps.2600840313. [PubMed] [Cross Ref]
27. Masson M, Loftsson T, Masson G, Stefansson E. Cyclodextrins as permeation enhancers: some theoretical evaluations and in vitro testing. J Control Release. 1999;59:107–118. doi: 10.1016/S0168-3659(98)00182-5. [PubMed] [Cross Ref]
28. Higuchi T. Physical chemical analysis of percutaneous absorption process from creams and ointments. J Soc Cosmet Chem. 1960;11:85–97.
29. Inatomi T, Spurr-Michaud S, Tisdale AS, Gipson IK. Human corneal and conjunctival epithelia express MUC1 mucin. Invest Ophthalmol Vis Sci. 1995;36:1818–1827. [PubMed]
30. Hidalgo IJ, Hillgren KM, Grass GM, Borchardt RT. Characterization of the unstirred water layer in Caco-2 cell monolayers using a novel diffusion apparatus. Pharm Res. 1991;8:222–227. doi: 10.1023/A:1015848205447. [PubMed] [Cross Ref]
31. Wikman A, Karlsson J, Carlstedt I, Artursson P. A drug absorption model based on the mucus layer producing human intestinal goblet cell line HT29-H. Pharm Res. 1993;10:843–852. doi: 10.1023/A:1018905109971. [PubMed] [Cross Ref]
32. Ohvo H, Slotte JP. Cyclodextrin-mediated removal of sterols from monolayers: effects of sterol structure and phospholipids on desorption rate. Biochemistry. 1996;35:8018–8024. doi: 10.1021/bi9528816. [PubMed] [Cross Ref]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists