Search tips
Search criteria 


Logo of aapspharmspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
AAPS PharmSciTech. 2005 December; 6(4): E655–E663.
Published online 2005 December 27. doi:  10.1208/pt060482
PMCID: PMC2750615

The crystal structure and physicochemical characteristics of 2-hydroxy-N-[3(5)-pyrazolyl]-1,4-naphthoquinone-4-imine, a new antitrypanosomal compound


This study was designed to investigate the physical characteristics and crystalline structure of 2-hydroxy-N-[3(5)-pyrazolyl]-1,4-naphthoquinone-4-imine (PNQ), a new active compound againstTrypanosoma cruzi, the causative agent of American trypanosomiasis. Methods used included differential scanning calorimetry, thermogravimetry, hot stage microscopy, polarized light microscopy (PLM), Fourier-transform infrared (FTIR) spectroscopy, and high-resolution X-ray powder diffraction (HR-XRPD). According to PLM and HR-XRPD data, PNQ crystallized as red oolitic crystals (absolute methanol) or prisms (dimethyl sulfoxide [DMSO]-water) with the same internal structure. The findings obtained with HR-XRPD data (applying molecular location methods) showed a monoclinic unit cell [a=18.4437(1)Å, b=3.9968(2) Å, c=14.5304(1) Å, α=90°, β=102.71(6)°, γ=90°, V=1044.9(1) Å3, Z=4, space group P21/c], and a crystal structure (excluding H-positions) described by parallel layers in the direction of theb-axis, with molecules held by homochemical (phenyl-phenyl and pyrazole-pyrazole) van der Waals interactions. In addition, FTIR spectra displayed the NH-pyrazole stretch overlapped with the OH absorption at 3222 cm−1, typical of-NH and-OH groups associated through H-bondings; and a carbonyl stretching absorption at 1694 cm−1, indicating a non-extensively H-bonded quinonic C=O, which was in accordance with the solved crystal structure of PNQ. The existence of such cohesive forces shed light on the thermo-analytical data, which revealed that PNQ is a stable solid, unaffected by oxygen that decomposed without melting above 260°C.

Keywords: anti-Trypanosoma cruzi agent, high-resolution X-ray powder diffraction, crystal structure, differential scanning calorimetry

Full Text

The Full Text of this article is available as a PDF (260K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Figueroa JP. Report of the Workgroup on parasitic diseases. Morb Mortal Wkly Rep. 1999;48:118–125.
2. Ferreira RCC, Ferreira LCS. Mutagenicity of nifurtimox and benznidazole in the salmonella/microsome assay. Braz J Med Biol Res. 1986;19:19–25. [PubMed]
3. Radloff PD, Philips J, Nkeyi M, Hutchinson D, Krensner PG. Atovaquone and proguanil forplasmodium falciparum malaria. Lancet. 1996;347:1511–1514. doi: 10.1016/S0140-6736(96)90671-6. [PubMed] [Cross Ref]
4. Li CJ, Li YZ, Pinto AV, Pardee AB. Potent inhibition of tumor survival in vivo by β-lapachone plus taxol: combining drugs imposes different artificial checkpoints. Proc Natl Acad Sci USA. 1999;96:13369–13374. doi: 10.1073/pnas.96.23.13369. [PubMed] [Cross Ref]
5. Sperandeo NR, Brun R. Synthesis and biological evaluation of pyrazolylnaphthoquinones as new potential antiprotozoal and cytotoxic agents. Chem Bio Chem. 2003;4:69–72. [PubMed]
6. Byrn SR, Pfeifer R, Stowell JF. Solid-State Chemistry of Drugs. 2nd ed. West Lafayette, IN: SSCI Inc; 1999.
7. Wells J. Pharmaceutical Preformulation: The Physicochemical Properties of Drug Substances. New York, NY: Ellis Horwood Ltd, John Wiley & Sons; 1993.
8. Britain HG. Physical Characterization of Pharmaceutical Solids. New York, NY: Marcel Dekker Inc; 1995.
9. Pagola S, Stephens PW, Bohle DS, Kosar AD, Madsen SK. The structure of malaria pigment β-haematin. Nature. 2000;404:307–310. doi: 10.1038/35005132. [PubMed] [Cross Ref]
10. Spek AL.PLATON, A Multipurpose Crystallographic Tool. 2001. Utrecht, The Netherlands: Utrecht University. Available at: http://www. Accessed: July 8, 2005.
11. Ghosh S, Ojala WH, Gleason WB, Grant DJW. Relationships between crystal structures, thermal properties and solvate stability of dialkylhydroxypyridones and their formic acid solvates. J Pharm Sci. 1995;84:1392–1399. doi: 10.1002/jps.2600841203. [PubMed] [Cross Ref]
12. United States Pharmacopeia XXVI. Washington, DC: United States Pharmacopeial Convention Inc; 2003.
13. Dinnebier RE. GUFI Powder Diffraction Software. 2002. Available at: Accessed: July 8, 2005.
14. Visser JW. A fully automatic program for finding the unit cell from powder data.J Appl Cryst [serial online]. 1969. Available at: Accessed: July 8, 2005.
15. Bail A, Duroy H, Fourquet JL. Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mat Res Bull. 1988;23:447–452. doi: 10.1016/0025-5408(88)90019-0. [Cross Ref]
16. Rodriguez-Carvajal J. FULLPROF: A program for Rietveld refinement and pattern matching analysis.Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr. 1990. Toulouse, France. Available at: Accessed: July 8, 2005.
17. Larson AC, Von Dreele RB.GSAS, Generalized Crystal Structure Analysis System. 1987. Los Alamos, NM: Los Alamos National Laboratory Report Number LA-UR-86-748. Available at: 14/ftp-mirror/gsas/public/gsas/. Accessed: July 8, 2005.
18. Stephens PW, Pagola S. Powder Structure Solution Program [computer program]. Version 2000. Available at: http://powder.physics. Accessed: July 8, 2005.
19. Allen FH, Kennard O. 3D search and research using the Cambridge structural database. Chem Design Automation News. 1998;8:31–37.
20. Farrugia LJ, Program Ortep-3 for Windows.J Appl Cryst [serial online]. 1997. Available at: Accessed: July 8, 2005.
21. Scott HG. The estimation of standard deviation in powder diffraction Rietveld refinements. J Appl Crystallogr. 1983;16:159–163. doi: 10.1107/S0021889883010195. [Cross Ref]
22. Focés-Focés C, Llamas-Saiz AL, Claramunt RM, López C, Elguero JJ. Structure of 3(5)-methyl-4-nitropyrazole in the solid state: tautomerism, crystallography and the problem of desmotropy.J Chem Soc Chem Commun. 1994:1143–1145.
23. Fernández AE, Bertorello MM, Manzo RH. Síntesis y propiedades espectroscópicas de aminoisoxazolilnaftoquinonas. Anales Asoc Quím Argent. 1982;70:49–60.
24. Sperandeo NR, Bertorello MM, Briñón MC. Synthesis and some physicochemical properties of 2-hydroxy-N-(3,4-dimethyl-5-isoxazolyl)-1,4-naphthoquinone-4-imine derivatives. J Pharm Sci. 1994;83:332–335. doi: 10.1002/jps.2600830313. [PubMed] [Cross Ref]
25. Dorn H, Zubek A. Bicyclische systeme aus acetessigester und 5-amino-1-methyl-5-amno-1-benzyl-sowie 3(5)-aminopyrazol. Chem Ber. 1968;101:3265–3277. doi: 10.1002/cber.19681010934. [PubMed] [Cross Ref]
26. Galwey AK. Thermal reaction of selected solids including reactants that melt during chemical change. J Thermal Anal. 1994;41:267–286. doi: 10.1007/BF02549315. [Cross Ref]
27. Sperandeo NR, Bertorello MM. Solid state characterization of new protozoocidal agents—aminoisoxazolylnaphthoquinones. Thermochim Acta. 2001;378:69–77. doi: 10.1016/S0040-6031(01)00569-X. [Cross Ref]
28. Ford JL, Timmins P. Pharmaceutical Thermal Analysis: Techniques and Applications. New York, NY: Ellis Horwood Ltd, John Wiley & Sons; 1989.
29. Berbenni V, Marini A, Bruni G, Maggioni A, Riccardi R, Orlandi A. Physico-chemical characterization of different solid forms of spironolactona. Thermochim Acta. 1999;340–341:117–129. doi: 10.1016/S0040-6031(99)00258-0. [Cross Ref]
30. Marel HW. Quantitative differential thermal analysis of clay mineral and other minerals. Am Mineral. 1956;41:222–224.
31. MacKenzie RC, Michell BD. Differential thermal analysis data: a review. Analyst. 1962;87:420–434. doi: 10.1039/an9628700420. [Cross Ref]
32. Haleblian JK. Characterization of habits and crystalline modification of solids and their pharmaceutical applications. J Pharm Sci. 1975;64:1269–1288. doi: 10.1002/jps.2600640805. [PubMed] [Cross Ref]
33. Tiwary AK, Panpalia GM. Influence of crystal habit on trimethoprim suspension formulation. Pharm Res. 1999;16:261–265. doi: 10.1023/A:1018832526093. [PubMed] [Cross Ref]
34. Dresse A, Gegard MA, Lays A. Human pharmacokinetics of 2 crystalline and galenic forms of diflunisal, a new analgesic. Pharm Acta Helv. 1978;53:177–181. [PubMed]
35. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–420. doi: 10.1023/A:1016212804288. [PubMed] [Cross Ref]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists