PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of aapspharmspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
 
AAPS PharmSciTech. 2007 September; 8(3): E68–E77.
Published online 2007 July 27. doi:  10.1208/pt0803060
PMCID: PMC2750556

Characterization of β-lapachone and methylated β-cyclodextrin solid-state systems

Abstract

The purpose of this research was to explore the utility of β cyclodextrin (βCD) and β cyclodextrin derivatives (hydroxypropyl-β-cyclodextrin [HPβCD], sulfobutylether-β-CD [SB\CD], and a randomly methylated-β-CD [RMβCD]) to form inclusion complexes with the antitumoral drug, β-lapachone (βLAP), in order to overcome the problem of its poor water solubility. RMβCD presented the highest efficiency for βLAP solubilization and was selected to develop solid-state binary systems. Differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), Fourier transform infrared (FTIR) and optical and scanning electron microscopy results suggest the formation of inclusion complexes by both freeze-drying and kneading techniques with a dramatic improvement in drug dissolution efficiency at 20-minute dissolution efficiency (DE20-minute 67.15% and 88.22%, respectively) against the drug (DE20-minute 27.11%) or the βCD/drug physical mixture (DE20-minute 27.22%). However, the kneading method gives a highly crystalline material that together with the adequate drug dissolution profile make it the best procedure in obtaining inclusion complexes of RMβCD/βLAP convenient for different applications of βLAP.

Keywords: β-lapachone, antitumoral, cyclodextrin, inclusion complex, crystallinity, dissolution rate

Full Text

The Full Text of this article is available as a PDF (497K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Burnett AR, Thomson RH. Naturally occurring quinones. XII. Extractives fromTabebuia chrysantha and other Bignoniaceae.J Chem Soc C. 1968;***;850–853.
2. Hooker SC, Shepard HW, Walsh JG, Connitt GH. Constitution of lapachol and its derivatives. J Am Chem Soc. 1936;58:1190–1197. doi: 10.1021/ja01298a033. [Cross Ref]
3. Guiraud P, Steiman R, Campos-Takaki G, Seigle-Murandi F, Simeon de Buochberg M. Comparison of antibacterial and antifungal activities of lapachol and b-lapachone. Planta Med. 1994;60:373–374. doi: 10.1055/s-2006-959504. [PubMed] [Cross Ref]
4. Li CJ, Zhang LJ, Dezube BJ, Crumpacker CS, Pardee AB. Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication. Proc Natl Acad Sci USA. 1993;90:1839–1842. doi: 10.1073/pnas.90.5.1839. [PubMed] [Cross Ref]
5. Pereira EM, Machado T de B, Leal IC, et al. Tabebuia avellanedae naphthoquinones: Activity against methicillin-resistant staphylococcal strains, cytotoxic activity and in vivo dermal irritability analysis. Ann Clin Microbiol Antimicrob. 2006;5:5–5. doi: 10.1186/1476-0711-5-5. [PMC free article] [PubMed] [Cross Ref]
6. Muller K, Sellmer A, Weigrebe W. Potential antipsoriatic agents: Lapacho compounds as potent inhibitors of HaCaT cell growth. J Nat Prod. 1999;62:1134–1136. doi: 10.1021/np990139r. [PubMed] [Cross Ref]
7. Tudan C, Jackson JK, Higo TT, Burt HM. The effect of inhibiting topoisomerase I and II on the anti-apoptotic response associated with pro-inflammatory crystals of calcium pyrophosphate dihydrate in human neutrophils. Inflamm Res. 2003;52:8–17. doi: 10.1007/s000110300008. [PubMed] [Cross Ref]
8. Pinto CN, Dantas AP, De Moura KCG, et al. Chemical reactivity studies with naphthoquinones from tabebuia with anti-trypanosoma efficacy. Arzneimittelforschung. 2000;50:1120–1128. [PubMed]
9. Planchon SM, Wuerzberger S, Frydman B, et al. Beta-lapachone-mediated apoptosis in human promyelocytic leukemia (HL-60) and human prostate cancer cells: A p53-independent response. Cancer Res. 1995;55:3706–3711. [PubMed]
10. Li Y, Sun X, LaMont JT, Pardee AB, Li CJ. Selective killing of cancer cells by b-lapachone: Direct checkpoint activation as a strategy against cancer. Proc Natl Acad Sci USA. 2003;100:2674–2678. doi: 10.1073/pnas.0538044100. [PubMed] [Cross Ref]
11. Ough M, Lewis A, Bey EA, et al. Efficacy of beta-lapachone in pancreatic cancer treatment: exploiting the novel, therapeutic target NQO1. Cancer Biol Ther. 2005;4:95–102. doi: 10.4161/cbt.4.1.1382. [PubMed] [Cross Ref]
12. Suzuki M, Amano M, Choi J, et al. Synergistic effects of radiation and beta-lapachone in DU-145 human prostate cancer cells in vitro. Radiat Res. 2006;165:525–531. doi: 10.1667/RR3554.1. [PubMed] [Cross Ref]
13. Jiang Z, Reddy DG, inventors. Pharmaceutical compositions containing b-lapachone or derivatives or analogs. PCT Designated States: Designated States W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS. JP, KE, KG, KP, KR, KZ, LC, LK, LS, LT, US patent 7074824, February 13, 2003.
14. Rajewski RA, Stella VJ. Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J Pharm Sci. 2007;85:1142–1169. doi: 10.1021/js960075u. [PubMed] [Cross Ref]
15. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 2007;85:1017–1025. doi: 10.1021/js950534b. [PubMed] [Cross Ref]
16. Nasongkla N, Wiedmann AF, Bruening A, et al. Enhancement of solubility and bioavailability of beta-lapachone using cyclodextrin inclusion complexes. Pharm Res. 2003;20:1626–1633. doi: 10.1023/A:1026143519395. [PubMed] [Cross Ref]
17. Wang F, Blanco E, Ai H, Boothman DA, Gao J. Modulating beta-lapachone release from polymer millirods through cyclodextrin complexation. J. Pharm Sci. 2006;95:2309–2319. doi: 10.1002/jps.20721. [PubMed] [Cross Ref]
18. Cao F, Guo J, Ping Q. The physicochemical characteristics of freeze-dried scutellarin-cyclodextrin tetracomponent complexes. Drug Dev Ind Pharm. 2005;31:747–756. doi: 10.1080/03639040500216220. [PubMed] [Cross Ref]
19. Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: Past, present and future. Nat Rev Drug Discov. 2004;3:1023–1035. doi: 10.1038/nrd1576. [PubMed] [Cross Ref]
20. Soares da Cunha Filho MS, Alves FC, Alves GMC, Monteiro DB, Morais de Medeiros FP, Rolim Neto PJ. Beta-lapachone: Development and validation of analytical method for the new therapeutic antineoplastic alternative. Rev Farm. 2005;86:39–43.
21. Higuchi T, Connors KA. Phase solubility techniques. Adv. Anal Chem. 1965;4:117–212.
22. Hedges AR. Industrial applications of cyclodextrins. Chem Rev. 1998;98:2035–2044. doi: 10.1021/cr970014w. [PubMed] [Cross Ref]
23. Balzar D, Audebrand N, Daymond MR, et al. Size-strain line-broadening analysis of the ceria round-robin sample. Appl Cryst. 2004;37:911–924. doi: 10.1107/S0021889804022551. [Cross Ref]
24. Warren BE, Averbach BL. The effect of cold work in metals on powder pattern intensities. J Appl Phys. 1949;20:1066–1069. doi: 10.1063/1.1698243. [Cross Ref]
25. Roisnel T, Rodriguez-Carvajal J. WinPLOTR: A Windows tool for powder diffraction patterns analysis Materials Science; Stafa-Zurich, Switzerland: Trans Tech Publications; 2000. pp. 118–123.
26. Cline JP, Deslattes RD, Staudenmann JL. Certificate SRM 660a. Gaithersburg, MD: NIST; 2000.
27. Veiga MD, Diaz PJ, Ahsan F. Interactions of griseofulvin with cyclodextrins in solid binary systems. J. Pharm Sci. 1998;87:891–900. doi: 10.1021/js970233x. [PubMed] [Cross Ref]
28. US Department of Health and Human Services. Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms, August 1997. Available at: http://www.fda.gov/eder/guidance/1713bp1.pdf. Accessed January 23, 2007.
29. Khan KA, Rhodes CT. Effect of compaction pressure on the dissolution efficiency of some direct compression systems. Pharm Acta Helv. 1972;47:594–607. [PubMed]
30. Fernández-Palacín F, López Sánchez MA, Muñoz Márquez MA, Rodríguez-Chía M, Sánchez-Navas A, Valero-Franco C. Estadistica Asistida por Ordenador. Statgraphics Plus 4.1. Cádiz: Universidad de Cádiz; 2000.
31. Mura P, Furlanetto S, Cirri M, Maestrelli F, Corti G, Pinzauti S. Interaction of naproxen with ionic cyclodextrins in aqueous solution and in the solid state. J Pharm Biomed Anal. 2005;37:987–994. doi: 10.1016/j.jpba.2004.06.016. [PubMed] [Cross Ref]
32. Jacquet R, Elfakir C, Lafosse M. Characterization of a new methylated beta-cyclodextrin with a low degree of substitution by electrospray ionization mass spectrometry and liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2005;19:3097–3102. doi: 10.1002/rcm.2175. [PubMed] [Cross Ref]
33. Cunha-Filho MS, Landin M, Martinez-Pacheco R, Dacunha-Marinho B. Beta-lapachone. Acta Crystallogr C. 2006;62:0473–0475. doi: 10.1107/S0108270106021706. [PubMed] [Cross Ref]
34. Frooming K, Szejtli J. Cyclodextrin in Pharmacy. London, UK: Kluwer Academic Publishers; 1994.
35. Cabral Marques HM, Hadgraft J, Kellaway IW. Studies of cyclodextrin inclusion complexes. I. The salbutamol-cyclodextrin complex as studied by phase solubility and DSC. Int J Pharm. 1990;63:259–266. doi: 10.1016/0378-5173(90)90132-N. [Cross Ref]
36. Cirri M, Rangoni C, Maestrelli F, Corti G, Mura P. Development of fast-dissolving tablets of flurbiprofen-cyclodextrin complexes. Drug Dev Ind Pharm. 2005;31:697–707. doi: 10.1080/03639040500253694. [PubMed] [Cross Ref]
37. Fernandes CM, Teresa Vieira M, Veiga FJB. Physicochemical characterization and in vitro dissolution behavior of nicardipine-cyclodextrins inclusion compounds. Eur J Pharm Sci. 2002;15:79–88. doi: 10.1016/S0928-0987(01)00208-1. [PubMed] [Cross Ref]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists