Search tips
Search criteria 


Logo of aapspharmspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
AAPS PharmSciTech. 2005 June; 6(2): E329–E357.
Published online 2005 October 14. doi:  10.1208/pt060243
PMCID: PMC2750546

Cyclodextrins in drug delivery: An updated review


The purpose of this review is to discuss and summarize some of the interesting findings and applications of cyclodextrins (CDs) and their derivatives in different areas of drug delivery, particularly in protein and peptide drug delivery and gene delivery. The article highlights important CD applications in the design of various novel delivery systems like liposomes, microspheres, microcapsules, and nanoparticles. In addition to their well-known effects on drug solubility and dissolution, bioavailability, safety, and stability, their use as excipients in drug formulation are also discussed in this article. The article also focuses on various factors influencing inclusion complex formation because an understanding of the same is necessary for proper handling of these versatile materials. Some important considerations in selecting CDs in drug formulation such as their commercial availability, regulatory status, and patent status are also summarized. CDs, because of their continuing ability to find several novel applications in drug delivery, are expected to solve many problems associated with the delivery of different novel drugs through different delivery routes.

KeyWords: cyclodextrins, drug formulation, drug delivery, novel delivery systems, excipients

Full Text

The Full Text of this article is available as a PDF (381K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Loftsson T, Brewester M. Pharmaceutical applications of cyclodextrins. I. Drug solubilization and stabilization. J Pharm Sci. 1996;85:1017–1025. doi: 10.1021/js950534b. [PubMed] [Cross Ref]
2. Endo T, Nagase H, Ueda H, Kobayashi S, Nagai T. Isolation, purification, and characterization of Cyclomaltodecaose (curly epsilon-Cyclodextrin), Cyclomaltoundecaose (zeta-Cyclodextrin) and Cyclomaltotridecaose (é-Cyclodextrin) Chem Pharm Bull (Tokyo.) 1997;45:532–536.
3. Endo T, Nagase H, Ueda H, Shigihara A, Kobayashi S, Nagai T. Isolation, purification and characterization of Cyclomaltooctadecaose (v-Cyclodextrin), Cyclomaltononadecaose (xi-Cyclodextrin), Cyclomaltoeicosaose (o-Cyclodextrin) and Cyclomaltoheneicosaose (ã-Cyclodextrin. Chem Pharm Bull (Tokyo). 1998;46:1840–1843.
4. Miyazawa H, Ueda H, Nagase T, Endo T, Kobayashi S, Nagai T. Physicochemical properties and inclusion complex formation of δ-cyclodextrin. Eur J Pharm Sci. 1995;3:153–162. doi: 10.1016/0928-0987(95)00006-Y. [Cross Ref]
5. Szejtli J. Cylodextrin in drug formulations: Part I. Pharm Technol Int. 1991;3:15–23.
6. Szente L, Szejtli J. Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development. Adv Drug Deliv Rev. 1999;36:17–38. doi: 10.1016/S0169-409X(98)00092-1. [PubMed] [Cross Ref]
7. Matsuda H, Arima H. Cyclodextrins in transdermal and rectal delivery. Adv Drug Deliv Rev. 1999;36:81–99. doi: 10.1016/S0169-409X(98)00056-8. [PubMed] [Cross Ref]
8. Higuchi T, Connors KA. Phase-solubility techniques. Adva Anal Chem Instr. 1965;4:212–217.
9. Rajewski RA, Stella VJ. Pharmaceutical applications of cyclodextrins. 2.In vivo drug delivery. J Pharm Sci. 1996;85:1142–1168. doi: 10.1021/js960075u. [PubMed] [Cross Ref]
10. Hersey A, Robinson BH, Kelly HC. Mechanism of inclusion compound formation for binding of organic dyes, ions and surfactants to alpha cyclodextrin studied by kinetic methods based on competition experiments. J Chem Soc, Faraday Trans 1. 1986;82:1271–1287. doi: 10.1039/f19868201271. [Cross Ref]
11. Cramer F, Saenger W, Satz HC. Inclusion compounds. XIX. The formation of inclusion compounds of alpha cyclodextrin in aqueous solutions, thermodynamics and kinetics. J Am Chem Soc. 1967;89:14–20. doi: 10.1021/ja00977a003. [Cross Ref]
12. Uekama K, Otagiri M. Cyclodextrins in drug carrier systems. Crit Rev Ther Drug Carrier Sys. 1987;3:1–40. [PubMed]
13. Szejtli J. Medicinal applications of cyclodextrins. Med Res Rev. 1994;14:353–386. doi: 10.1002/med.2610140304. [PubMed] [Cross Ref]
14. Thomson DO. Cyclodextrins-enabling excipients: their present and future use in pharmaceuticals. Crit Rev Ther Drug Carr Sys. 1997;14:1–104. [PubMed]
15. Jayachandra Babu R, Pandit JK. Cyclodextrin inclusion complexes: oral applications. Eastern Pharmacist. 1995;38:37–42.
16. Irie T, Uekama K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci. 1997;86:147–162. doi: 10.1021/js960213f. [PubMed] [Cross Ref]
17. Stella VJ, Rajeswski RA. Cyclodextrins: their future in drug formulation and delivery. Pharm Res. 1997;14:556–567. doi: 10.1023/A:1012136608249. [PubMed] [Cross Ref]
18. Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev. 1998;98:2045–2076. doi: 10.1021/cr970025p. [PubMed] [Cross Ref]
19. Loftsson T, Ólafsson JH. Cyclodextrins: new drug delivery system in dermatology. Int J Dermatol. 1998;37:241–246. doi: 10.1046/j.1365-4362.1998.00369.x. [PubMed] [Cross Ref]
20. Loftsson T. Increasing the cyclodextrin complexation of drugs and drug bioavailability through addition of water-soluble polymers. Pharmazie. 1998;53:733–740. [PubMed]
21. Castillo JA, Canales JP, Garcia JJ, Lastres JL, Bolas F, Torrado JJ. Preparation and characterization of albendazole beta-cyclodextrin complexes. Drug Dev Ind Pharm. 1999;25:1241–1248. doi: 10.1081/DDC-100102294. [PubMed] [Cross Ref]
22. Diaz D, Escobar Llanos CM, Bernad MJB. Study of the binding in an aqueous medium of inclusion complexes of several cyclodextrins involving fenoprofen calcium. Drug Dev Ind Pharm. 1999;25:107–110. doi: 10.1081/DDC-100102150. [PubMed] [Cross Ref]
23. Mura P, Faucci MT, Parrini PL, Furlanetto S, Pinzauti S. Influence of the preparation method on the physicochemical properties of ketoprofen-cyclodextrin binary systems. Int J Pharm. 1999;179:117–128. doi: 10.1016/S0378-5173(98)00390-1. [PubMed] [Cross Ref]
24. Nesna N, Lou J, Breslow R. The binding of cocaine to cyclodextrins. Bioorg Med Chem Lett. 2000;10:1931–1933. doi: 10.1016/S0960-894X(00)00371-1. [PubMed] [Cross Ref]
25. Arias-Blanco MJA, Moyano JR, Martinez JIP, Gines JM. Study of inlusion complex of gliclazide in, α-cyclodextrin. J Pharm Biomed Anal. 1998;18:275–279. doi: 10.1016/S0731-7085(98)00179-4. [PubMed] [Cross Ref]
26. Ueda H, Wakamiya T, Endo H, Nagase H, Tomono K, Nagai T. Interaction of cyclomaltononaose (delta-CD) with several drugs. Drug Dev Ind Pharm. 1999;25:951–954. doi: 10.1081/DDC-100102256. [PubMed] [Cross Ref]
27. Akasaka H, Endo T, Nagase H, Ueda H, Kobayashi S. Complex formation of cyclomaltononaose delta-cyclodextrin (delta-CD) with macrocyclic compounds. Chem Pharm Bull (Tokyo). 2000;48:1986–1989. [PubMed]
28. Mura P, Adragna E, Rabasco AM, et al. Effects of the host cavity size and the preparation method on the physicochemical properties of ibuproxam-cyclodextrin systems. Drug Dev Ind Pharm. 1999;25:279–287. doi: 10.1081/DDC-100102172. [PubMed] [Cross Ref]
29. Lutka A. Investigation of interaction of promethazine with cyclodextrins in aqueous solution. Acta Pol Pharm. 2002;59:45–51. [PubMed]
30. Nagase Y, Hirata M, Wada K, et al. Improvement of some pharmaceutical properties of DY-9760e by sulfobutyl ether beta-cyclodextrin. Int J Pharm. 2001;229:163–172. doi: 10.1016/S0378-5173(01)00851-1. [PubMed] [Cross Ref]
31. Jain AC, Adeyeye MC. Hygroscopicity, phase solubility and dissolution of various substituted sulfobutylether beta-cyclodextrins (SBE) and danazol-SBE inclusion complexes. Int J Pharm. 2001;212:177–186. doi: 10.1016/S0378-5173(00)00607-4. [PubMed] [Cross Ref]
32. Loftsson T, Peterson DS. Cyclodextrin solubilization of ETH-615, a zwitterionic drug. Drug Dev Ind Pharm. 1998;24:365–370. [PubMed]
33. Dalmora MEA, Oliveira AG. Inclusion complex of piroxicam with beta-cyclodextrin and incorporation in hexadecyltrimethylammonium bromide based microemulsion. Int J Pharm. 1999;184:157–164. doi: 10.1016/S0378-5173(99)00099-X. [PubMed] [Cross Ref]
34. McCandless R, Yalkowsky SH. Effect of hydroxypropyl-beta-cyclodextrin and pH on the solubility of levemopamil HCl. J Pharm Sci. 1998;87:1639–1642. doi: 10.1021/js9802143. [PubMed] [Cross Ref]
35. Kim Y, Oksanen DA, Massefski W, Blake JF, Duffy EM, Chrunyk B. Inclusion complexation of ziprasidone mesylate with beta-cyclodextrin sulfobutyl ether. J Pharm Sci. 1998;87:1560–1567. doi: 10.1021/js980109t. [PubMed] [Cross Ref]
36. Tros de Ilarduya MC, Martin C, Goni MM, Martinez-Oharriz MC. Solubilization and interaction of sulindac with beta-cyclodextrin in the solid state and in aqueous solution. Drug Dev Ind Pharm. 1998;24:301–306. [PubMed]
37. Diaz D, Bernad MJB, Mora JG, Llaons CME. Solubility, 1H-NMR, and molecular mechanics of mebendazole with different cyclodextrins. Drug Dev Ind Pharm. 1999;25:111–115. doi: 10.1081/DDC-100102151. [PubMed] [Cross Ref]
38. Zarzycki PK, Lamparczyk H. The equilibrium constant of β-cyclodextrin-phenolphtalein complex; influence of temperature and tetrahydrofuran addition. J Pharm Biomed Anal. 1998;18:165–179. doi: 10.1016/S0731-7085(98)00150-2. [PubMed] [Cross Ref]
39. Jain AC, Adeyeye MC. Hygroscopicity, phase solubility and dissolution of various substituted sulfobutylether beta-cyclodextrins (SBE) and danazol-SBE inclusion complexes. Int J Pharm. 2001;212:177–186. doi: 10.1016/S0378-5173(00)00607-4. [PubMed] [Cross Ref]
40. Chowdary KPR, Nalluri BN. Nimesulide and beta-cyclodextrin inclusion complexes: physicochemical characterization and dissolution rate studies. Drug Dev Ind Pharm. 2000;26:1217–1220. doi: 10.1081/DDC-100100995. [PubMed] [Cross Ref]
41. Palmeiri GF, Angeli DG, Giovannucci G, Martelli S. Inclusion of methoxytropate in β- and hydroxylpropyl β-cyclodextrins: Comparision of preparation methods. Drug Dev Ind Pharm. 1997;23:27–37.
42. Palmieri GF, Wehrle P, Stamm A. Inclusion of vitamin D2 in β-cyclodextrin: evaluation of different complexation methods. Drug Dev Ind Pharm. 1993;19:875–885. doi: 10.3109/03639049309062988. [Cross Ref]
43. Moyano JR, Arias MJ, Gines JM, Perez JI, Rabasco AM. Dissolution behavior of oxazepam in the presence of cyclodextrins: evaluation of oxazepam dimeb binary system. Drug Dev Ind Pharm. 1997;23:379–385.
44. Pose-Vilarnovo B, Perdomo-Lopez I, Echezarrela-Lopez M, Schroth-Pardo P, Estrada E, Torres-Labandeira JJ. Improvement of water solubility of sulfamethizole through its complexation with β- and hydroxypropyl-β-cyclodextrin—Characterization of the interaction in solution and in solid state. Eur J Pharm Sci. 2001;13:325–331. doi: 10.1016/S0928-0987(01)00131-2. [PubMed] [Cross Ref]
45. Mitrevej A, Sinchaipanid N, Junyaprasert V, Warintornuwat L. Effect of grinding of β-cyclodextrin and glibenclamide on tablet properties. Drug Dev Ind Pharm. 1996;22:1237–1241. doi: 10.3109/03639049609063243. [Cross Ref]
46. Senoferjan AM, Nanjundaswamy NG, Mahesh S, Murthy SN. Formulation and evaluation of β- cyclodextrin complexes of tenoxicam. Indian J Pharm Sci. 2000;62:119–121.
47. Loftsson T, Guomundsdottir TK, Frioriksdottir H. The influence of water-soluble polymers and pH on hydroxypropyl-α-cyclodextrin complexation of drugs. Drug Dev Ind Pharm. 1996;22:401–406.
48. Nath BS, Shivkumar HN. A 2(3) Factorial studies on factors influencing Meloxicam β-cyclodextrin complexation for better solubility. Indian J Pharm Sci. 2000;62:129–132.
49. Cappello B, Carmignani C, Iervolino M, La Rotonda MI, Saettone MF. Solubilization of tropicamide by hydroxypropyl-beta-cyclodextrin and water-soluble polymers: in vitro/ in vivo studies. Int J Pharm. 2001;213:75–81. doi: 10.1016/S0378-5173(00)00648-7. [PubMed] [Cross Ref]
50. Faucci MT, Mura P. Effect of water-soluble polymers on naproxen complexation with natural and chemically modified beta-cyclodextrins. Drug Dev Ind Pharm. 2001;27:909–917. [PubMed]
51. Granero G, de Bertorello NM, Longhi M. Solubilization of a naphthoquinone derivative by hydroxypropyl-beta-cyclodextrin (HP-beta-CD) and polyvinylpyroolidone (PVP-K30). The influence of PVP-K30 and pH on solubilizing effect of HP-beta-CD. Boll Chim Farm. 2002;141:63–66. [PubMed]
52. Pedersen M. Effect of hydrotropic substances on the complexation of clotrimazole with beta cyclodextrin. Drug Dev Ind Pharm. 1993;19:439–448. doi: 10.3109/03639049309063201. [Cross Ref]
53. Veiga F, Fernandes C, Maincent P. Influence of the preparation method on the physicochemical properties of tolbutamide/cyclodextrin binary systems. Drug Dev Ind Pharm. 2001;27:523–532. doi: 10.1081/DDC-100105177. [PubMed] [Cross Ref]
54. Tokumura T, Nanda M, Tsushima Y, et al. Enhancement of bioavailability of cinnarizine from its beta-cyclodextrin complex on oral administration with DL-phenylalanine as a competing agent. J Pharm Sci. 1986;75:391–394. doi: 10.1002/jps.2600750415. [PubMed] [Cross Ref]
55. Muller BW, Albers E. Effect of hydrotropic substances on the complexation of sparingly soluble drugs with cyclodextrin derivatives and the influence of cyclodextrin complexation on the pharmacokinetics of the drugs. J Pharm Sci. 1991;80:599–604. doi: 10.1002/jps.2600800620. [PubMed] [Cross Ref]
56. Redenti E, Szente L, Szetli J. Drug/cyclodextrin/hydroxy acid multicomponent systems. Properties and pharmaceutical applications. J Pharm Sci. 2000;89:1–8. doi: 10.1002/(SICI)1520-6017(200001)89:1<1::AID-JPS1>3.0.CO;2-W. [PubMed] [Cross Ref]
57. Li P, Zhao L, Yalkowsky SH. Combined effect of cosolvent and cyclodextrin on solubilization of nonpolar drugs. J Pharm Sci. 1999;88:1107–1111. doi: 10.1021/js990159d. [PubMed] [Cross Ref]
58. Miyake K, Irie T, Arima H, et al. Characterization of itraconazole/ 2-hydroxypropyl-beta-cyclodextrin inclusion complex in aqueous propylene glycol solution. Int J Pharm. 1999;179:237–245. doi: 10.1016/S0378-5173(98)00393-7. [PubMed] [Cross Ref]
59. Blanchard J, Stefan P. Some important considerations in the use of cyclodextrins. Pharm Res. 1999;16:1796–1798. doi: 10.1023/A:1011930821801. [PubMed] [Cross Ref]
60. Muller BW, Brauns U. Hydroxypropyl-beta-cyclodextrin derivatives: influence of average degree of substitution on complexing ability and surface activity. J Pharm Sci. 1986;75:571–572. doi: 10.1002/jps.2600750609. [PubMed] [Cross Ref]
61. Zia V, Rajeswski RA, Bornancini ER, Luna EA, Stella VJ. Effect of alkyl chain length and degree of substitution on the complexation of sulfoalkyl ether beta-cyclodextrins with steroids. J Pharm Sci. 1997;86:220–224. doi: 10.1021/js960236u. [PubMed] [Cross Ref]
62. CycloLab Cyclodextrin Research & Development Laboratory Web site. Available at: Accessed May 25, 2005.
63. Wacker-Chemie GmbH Products and Trademarks Web site. Available at: Accessed May 25, 2005.
64. Sigma-Aldich Web site. Available at: Accessed May 25, 2005.
65. CyDex Inc Web site. Available at: Accessed May 25, 2005.
66. Inc CTC. Web site. Available at: Accessed May 25, 2005.
67. Cyclodextrins for Pharmaceutical Applications [technical brochure]. 2000. Wayne, NJ: International Specialty Products. Available at: http:// cyclodex.pdf. Accessed May 25, 2005.
68. Mosher G, Thompson DO. Complexation and Cyclodextrins. In: Swarbrick J, Boylan JC, editors. Encyclopedia of Pharmaceutical Technology. 2nd ed. New York, NY: Marcell Dekker; 2002. pp. 531–558.
69. Pitha J.Pharmaceutical preparations containing cyclodextrin derivatives. US patent 4 727 064. February 23, 1988.
70. Tasic LM, Jovanovic MD, Djuric ZR. The influence of beta-cyclodextrin on the solubility and dissolution rate of paracetamol solid dispersions. J Pharm Pharmacol. 1992;44:52–55. [PubMed]
71. Sanghavi NM, Choudhari KB, Matharu RS, Viswanathan L. Inclusion complexation of Lorazepam with beta-cyclodextrin. Drug Dev Ind Pharm. 1993;19:701–712. doi: 10.3109/03639049309062976. [Cross Ref]
72. Ahn HJ, Kim KM, Choi SJ, Kim CK. Effects of cyclodextrin derivatives on bioavailability of ketoprofen. Drug Dev Ind Pharm. 1997;23:397–401. doi: 10.3109/03639049709146143. [Cross Ref]
73. Dhanaraju MD, Santil Kumaran K, Baskaran T, Moorthy MSR. Enhancement of bioavailability of griseofulvin by its complexation with beta-cyclodextrin. Drug Dev Ind Pharm. 1998;24:583–587. doi: 10.3109/03639049809085663. [PubMed] [Cross Ref]
74. Veiga MD, Diaz PJ, Ahsan F. Interactions of griseofulvin with cyclodextrins in solid binary systems. J Pharm Sci. 1998;87:891–900. doi: 10.1021/js970233x. [PubMed] [Cross Ref]
75. Becket G, Schep LJ, Tan MY. Improvement of thein vitro dissolution of praziquantal by complexation with alpha-, beta- and gamma-cyclodextrins. Int J Pharm. 1999;179:65–71. doi: 10.1016/S0378-5173(98)00382-2. [PubMed] [Cross Ref]
76. Lotter J, Krieg HM, Keizer K, Breytenbach JC. The influence of beta-cyclodextrin on the solubility of chlorthalidone and its enantiomers. Drug Dev Ind Pharm. 1999;25:879–884. doi: 10.1081/DDC-100102248. [PubMed] [Cross Ref]
77. Askrabic JM, Rajic DS, Tasic L, Djuric S, Kasa P, Hodi KP. Etodolac and solid dispersion with β-cyclodextrins. Drug Dev Ind Pharm. 1997;23:1123–1129. doi: 10.3109/03639049709150503. [Cross Ref]
78. Cavallari C, Abertini B, Rodriguez MLG, Rodriguez L. Improved dissolution behavior of steam granulated piroxicam. Eur J Pharm Biopharm. 2002;54:65–73. doi: 10.1016/S0939-6411(02)00021-8. [PubMed] [Cross Ref]
79. Chowdary KPR, Rao SS. Investigation of dissolution enhancement of itraconazole by complexation with β-, and hydroxypropyl-β-cyclodextrins. Indian J Pharm Sci. 2001;63:438–441.
80. Ghorab MK, Adeyeye MC. Enhancement of ibuprofen dissolution via wet granulation with beta cyclodextrin. Pharm Dev Technol. 2001;6:305–314. doi: 10.1081/PDT-100002611. [PubMed] [Cross Ref]
81. Arias MJ, Moyano JR, Munoz P, Gines JM, Justo A, Giordano F. Study of omeprazole-gamma-cyclodextrin complexation in the solid state. Drug Dev Ind Pharm. 2000;26:253–259. doi: 10.1081/DDC-100100353. [PubMed] [Cross Ref]
82. Uekama K, Fujinaga T, Hirayama F, et al. Improvement of the oral bioavailability of digitalis glycosides by cyclodextrin complexation. J Pharm Sci. 1983;72:1338–1341. doi: 10.1002/jps.2600721125. [PubMed] [Cross Ref]
83. Londhe V, Nagarsenker M. Comparision between Hydroxypropyl-β-cyclodextrin and polyvinyl pyrrolidine as carriers for carbamazepine solid dispersions. Indian J Pharm Sci. 1999;61:237–240.
84. Trapani G, Latrofa A, Franco M, et al. Complexation of zolpidem with 2-hydroxypropyl-β-, methyl-β-, 2-hydroxypropyl-γ-cyclodextrins: Effect on aqueous solubility, dissolution rate and ataxic activity in rats. J Pharm Sci. 2000;89:1443–1451. doi: 10.1002/1520-6017(200011)89:11<1443::AID-JPS7>3.0.CO;2-Q. [PubMed] [Cross Ref]
85. Latrofa A, Trapani G, Franco M, et al. Complexation of phenytoin with some hydrophilic cyclodextrins: Effect on aqueous solubility, dissolution rate and anti-covulsant activity in mice. Eur J Pharm Biopharm. 2001;52:65–73. doi: 10.1016/S0939-6411(01)00144-8. [PubMed] [Cross Ref]
86. Miyake K, Arima H, Hiramaya F, et al. Improvement of solubility and oral bioavailability of rutin by complexation with 2-hydroxypropyl-beta-cyclodextrin. Pharm Dev Technol. 2000;5:399–407. doi: 10.1081/PDT-100100556. [PubMed] [Cross Ref]
87. Bettinetti G, Gazzaniga A, Mura P, Giordano F, Setti M. Thermal behavior and dissolution properties of naproxen in combinations with chemically modified beta-cyclodextrins. Drug Dev Ind Pharm. 1992;18:39–53. doi: 10.3109/03639049209043682. [Cross Ref]
88. Kang J, Kumar V, Yang D, Chowdhury PR, Hohl RJ. Cyclodextrin complexation: influence on the solubility, stability, and cytotoxicity of camptothecin, an antineoplastic agent. Eur J Pharm Sci. 2002;15:163–170. doi: 10.1016/S0928-0987(01)00214-7. [PubMed] [Cross Ref]
89. Zhao L, Li P, Yalkowsky SH. Solubilization of fluasterone. J Pharm Sci. 1999;88:967–969. doi: 10.1021/js9901413. [PubMed] [Cross Ref]
90. Kaukonen AM, Lennernas H, Mannermaa JP. Water-soluble Beta cyclodextrin in paediatric oral solutions of spiranolactone: preclinical evaluation of spiranolactone bioavailability from solutions of beta cyclodextrin derivatives in rats. J Pharm Pharmacol. 1998;50:611–619. [PubMed]
91. Arima H, Yunomae K, Miyake K, Irie T, Hirayama F, Uekama K. Comparative studies of the enhancing effects of cyclodextrins on the solubility and oral bioavailability of tacrolimus in rats. J Pharm Sci. 2001;90:690–701. doi: 10.1002/jps.1025. [PubMed] [Cross Ref]
92. Bettinetti G, Mura P, Faucci MT, Sorrenti M, Setti M. Interaction of naproxen with noncrystalline acetyl beta- and acetyl gamma-cyclodextrins in the solid and liquid state. Eur J Pharm Sci. 2002;15:21–29. doi: 10.1016/S0928-0987(01)00199-3. [PubMed] [Cross Ref]
93. Ueda H, Ou D, Endo T, Nagase H, Tomono K, Nagai T. Evaluation of a sulfobutyl ether beta-cyclodextrin as a solubilizing/stabilizing agent for several drugs. Drug Dev Ind Pharm. 1998;24:863–867. [PubMed]
94. Sangalli ME, Zema L, Moroni A, Foppoli A, Giordano F, Gazzania A. Influence of β-cylodextrin on the release of poorly soluble drugs from inert and hydrophilic heterogeneous polymeric matrices. Biomaterials. 2001;22:2647–2651. doi: 10.1016/S0142-9612(01)00005-9. [PubMed] [Cross Ref]
95. Pina ME, Veiga F. The influence of diluent on the release of theophylline from hydrophilic matrix tablets. Drug Dev Ind Pharm. 2000;26:1125–1128. doi: 10.1081/DDC-100100279. [PubMed] [Cross Ref]
96. Loftsson T, Stefánsson E. Effect of cyclodextrins on topical drug delivery to the eye. Drug Dev Ind Pharm. 1997;23:473–481.
97. Van Dorne H. Interaction between cyclodextrins and ophthalmic drugs. Eur J Pharm Biopharm. 1993;39:133–139.
98. Loftsson T, Másson M, Stefánsson E. Cyclodextrins as permeation enhancers. 17th Pharmaceutical Technology Conference and Exhibition: March 24–26, 1997; Dublin, Ireland.
99. Loftsson T, Leeves N, Bjomsdottir B, Duffy L, Masson M. Effect of cyclodextrins and polymers on triclosan availability and substantivity in toothpastesin vivo. J Pharm Sci. 1999;88:1254–1258. doi: 10.1021/js9902466. [PubMed] [Cross Ref]
100. Willems L, Geest RV, de Beule K. Itraconazole oral solution and intravenous formulations: a review of pharmacokinetics and pharmacodynamics. J Clin Pharm Ther. 2001;26:159–169. doi: 10.1046/j.1365-2710.2001.00338.x. [PubMed] [Cross Ref]
101. Yang T, Hussain A, Paulson J, Abbruscato TJ, Ahsan F. Cyclodextrins in nasal delivery of low-molecular-weight heparins:in vivo andin vitro studies. Pharm Res. 2004;21:1127–1136. doi: 10.1023/B:PHAM.0000032998.84488.7a. [PubMed] [Cross Ref]
102. Watanabe Y, Kiriyama M, Ito R, et al. Pharmacodynamics and pharmacokinetics of recombinant human granulocyte colony-stimulating factor (rhG-CSF) after administration of a rectal dosage vehicle. Biol Pharm Bull. 1996;19:1059–1063. [PubMed]
103. Nicolazzi C, Venard V, Le Faou A, Finance C. In vitro antiviral activity of the gancyclovir complexed with beta cyclodextrin on human cytomegalovirus strains. Antiviral Res. 2002;54:121–127. doi: 10.1016/S0166-3542(01)00218-2. [PubMed] [Cross Ref]
104. Blanchard J, Ugwu SO, Bhardwaj R, Dorr RT. Development and testing of an improved of phenytoin using 2-hydroxypropyl-beta-cyclodextrin. Pharm Dev Technol. 2000;5:333–338. doi: 10.1081/PDT-100100548. [PubMed] [Cross Ref]
105. Scalia S, Villani S, Casolari A. Inclusion complexation of the sunscreening agent 2-ethyl hexyl-p-dimethyl aminobenzoate with hydroxypropyl-β-cyclodextrin: effect on photostability. J Pharm Pharmacol. 1999;51:1367–1374. doi: 10.1211/0022357991777182. [PubMed] [Cross Ref]
106. Serni U. Rheumatic diseases—clinical experience with piroxicam-beta-cyclodextrin. Eur J Rheumatol Inflamm. 1993;12:47–54. [PubMed]
107. Kim JH, Lee SK, Ki MH, et al. Development of parenteral formulation for a novel angiogenesis inhibitor, CKD-732 through complexation with hydroxypropyl-β-cyclodextrin. Int J Pharm. 2004;272:79–89. doi: 10.1016/j.ijpharm.2003.11.034. [PubMed] [Cross Ref]
108. Nagase Y, Arima H, Wada K, et al. Inhibitory effect of sulfobutyl ether beta-cyclodextrin on DY-9760e-induced cellular damage:In vitro andin vivo studies. J Pharm Sci. 2003;92:2466–2474. doi: 10.1002/jps.10517. [PubMed] [Cross Ref]
109. Loftssona T, Jarvinen T. Cyclodextrins in ophthalmic drug delivery. Adv Drug Deliv Rev. 1999;36:59–79. doi: 10.1016/S0169-409X(98)00055-6. [PubMed] [Cross Ref]
110. Babu R, Pandit JK. Effect of aging on the dissolution stability of glibenclamide/beta-cyclodextrin complex. Drug Dev Ind Pharm. 1999;25:1215–1219. doi: 10.1081/DDC-100102291. [PubMed] [Cross Ref]
111. Cwiertnia B, Hladon T, Stobiecki M. Stability of Diclofenac sodium in the inclusion complex in the beta cyclodextrin in the solid state. J Pharm Pharmacol. 1999;51:1213–1218. doi: 10.1211/0022357991776930. [PubMed] [Cross Ref]
112. Li J, Guo Y, Zografi G. The solid-state stability of amorphous quinapril in the presence of beta-cyclodextrins. J Pharm Sci. 2002;91:229–243. doi: 10.1002/jps.10014. [PubMed] [Cross Ref]
113. Brewster ME, Loftsson T, Estes KS, Lin JL, Friðriksdóttir H. Effects of various cyclodextrins on solution stability and dissolution rate of doxorubicin hydrochloride. Int J Pharm. 1992;79:289–299. doi: 10.1016/0378-5173(92)90121-H. [Cross Ref]
114. Ma DQ, Rajewski RA, Velde DV, Stella VJ. Comparative effects of (SBE)7m-beta-CD and HP-beta-CD on the stability of two anti-neoplastic agents, melphalan and carmustine. J Pharm Sci. 2000;89:275–287. doi: 10.1002/(SICI)1520-6017(200002)89:2<275::AID-JPS15>3.0.CO;2-C. [PubMed] [Cross Ref]
115. Singla AK, Garg A, Aggarwal D. Paclitaxel and its formulations. Int J Pharm. 2002;235:179–192. doi: 10.1016/S0378-5173(01)00986-3. [PubMed] [Cross Ref]
116. Jarho P, Vander Velde D, Stella VJ. Cyclodextrin-catalyzed deacetylation of spironolactone is pH and cyclodextrin dependent. J Pharm Sci. 2000;89:241–249. doi: 10.1002/(SICI)1520-6017(200002)89:2<241::AID-JPS11>3.0.CO;2-0. [PubMed] [Cross Ref]
117. Sortino S, Giuffrida S, De Guldi G, et al. The photochemistry of flutamide and its inclusion complex with beta-cyclodextrin: Dramatic effect of the microenvironment on the nature and on the efficiency of the photodegradation pathways. Photochem Photobiol. 2001;73:6–13. doi: 10.1562/0031-8655(2001)073<0006:TPOFAI>2.0.CO;2. [PubMed] [Cross Ref]
118. Mielcarek J. Photochemical stability of the inclusion complexes formed by modified 1, 4-dihydropyridine derivatives with beta-cyclodextrin. J Pharm Biomed Anal. 1997;15:681–686. doi: 10.1016/S0731-7085(96)01900-0. [PubMed] [Cross Ref]
119. Lutka A, Koziara J. Interaction of trimeprazine with cyclodextrins in aqueous solution. Chem Pharm Bull (Tokyo). 2000;57:369–374. [PubMed]
120. Croyle MA, Cheng X, Wilson JM. Development of formulations that enhance physical stability of viral vectors for gene therapy. Gene Ther. 2001;8:1281–1290. doi: 10.1038/ [PubMed] [Cross Ref]
121. Dwivedi AK, Kulkami D, Khanna M, Singh S. Effect of cyclodextrins on the stability of new antimalarial compound N1-31-Acetyl/-41, 51-Dihydro-21 Furanyl-N4-(6-Methoxy, 8-Quinolinyl)-1-4-Pentane diamine. Ind J Pharm Sci. 1999;61:175–177.
122. Koester LS, Guterres SS, Le Roch M, Lima VLE, Zuanazzi JA, Bassani VI. Ofloxacin/beta-cyclodextrin complexation. Drug Dev Ind Pharm. 2001;27:533–540. doi: 10.1081/DDC-100105178. [PubMed] [Cross Ref]
123. Choi HG, Lee BJ, Han JH, et al. Terfenadine-beta-Cyclodextrin inclusion complex with antihistaminic activity enhancement. Drug Dev Ind Pharm. 2001;27:857–862. doi: 10.1081/DDC-100107250. [PubMed] [Cross Ref]
124. Aggarwal S, Singh PN, Mishra B. Studies on solubility and hypoglycemic activity of gliclazide beta-cyclodextrin-hydroxypropyl-methylcellulose complexes. Pharmazie. 2002;57:191–193. [PubMed]
125. Veiga F, Fernandes C, Teixeira F. Oral bioavailability and hypoglycaemic activity of tolbutamide/cyclodextrin inclusion complexes. Int J Pharm. 2000;202:165–171. doi: 10.1016/S0378-5173(00)00445-2. [PubMed] [Cross Ref]
126. Fathy M, Sheha M. In vitro and in vivo evaluation of amylobarbitone/hydroxypropyl-β-cyclodextrin complex prepared by a freeze-drying method. Pharmazie. 2000;55:513–517. [PubMed]
127. Zuo Z, Kwon G, Stevenson B, Diakur J, Wiebe LI. Flutamide-Hydroxy proyl- β-cyclodextrin complex: formulation, physical characterization, and absorption studies using the Caco-2 in vitro model. J Pharm Pharm Sci. 2000;3:220–227. [PubMed]
128. Yoo SD, Yoon BM, Lee HS, Lee KC. Increased bioavailability of clomipramine after sublingual administration in rats. J Pharm Sci. 1999;88:1119–1121. doi: 10.1021/js990163p. [PubMed] [Cross Ref]
129. Pitha J, Harman SM, Michel ME. Hydrophilic cyclodextrin derivatives enable effective oral administration of steroidal hormones. J Pharm Sci. 1986;75:165–167. doi: 10.1002/jps.2600750213. [PubMed] [Cross Ref]
130. Pitha J, Anaissie EJ, Uekama K. Gamma-cyclodextrin: testosterone complex suitable for sublingual administration. J Pharm Sci. 1987;76:788–790. doi: 10.1002/jps.2600761007. [PubMed] [Cross Ref]
131. Farag Badawy SI, Ghorab MM, Adeyeye CM. Bioavailability of danazol-hydroxypropyl-á-cylodextrin complex by different routes of administration. Int J Pharm. 1996;145:137–143. doi: 10.1016/S0378-5173(96)04763-1. [Cross Ref]
132. Jain AC, Aungust BJ, Adeyeye MC. Development and in vivo evaluation of buccal tablets prepared using danazol-sulfobutylether 7 beta-cyclodextrin (SBE 7) complexes. J Pharm Sci. 2002;91:1659–1668. doi: 10.1002/jps.10163. [PubMed] [Cross Ref]
133. Garcia-Rodriguez JJ, Torrado J, Bolas F. Improving bioavailability and anthelmentic activity of albendazole by preparing albendazole cyclodextrin complex. Parasite. 2001;8:S188–S190. [PubMed]
134. Jacobsen J, Bjerregaard S, Pedersen M. Cyclodextrin inclusion complexes of antimycotics intended to act in the oral cavity-drug supersaturation, toxicity on TR146 cells and release from a delivery system. Eur J Pharm Biopharm. 1999;48:217–224. doi: 10.1016/S0939-6411(99)00043-0. [PubMed] [Cross Ref]
135. Okimoto K, Ohike A, Ibuki R, et al. Design and evaluation of an osmotic pump tablet (OPT) for chlorpromazine using (SBE)7m-beta-CD. Pharm Res. 1999;16:549–554. doi: 10.1023/A:1018827214223. [PubMed] [Cross Ref]
136. Okimoto K, Miyake M, Ohnishi N, et al. Design and evaluation of an osmotic pump tablet (OPT) for prednisolone, a poorly water soluble drug, using (SBE)7m-beta-CD. Pharm Res. 1998;15:1562–1568. doi: 10.1023/A:1011955117026. [PubMed] [Cross Ref]
137. Funasaki N, Kawaguchi R, Hada S, Neya S. Ultraviolet spectroscopic estimation of microenvironments and bitter tastes of oxyphenonium bromide in cyclodextrin solutions. J Pharm Sci. 1999;88:759–762. doi: 10.1021/js990026s. [PubMed] [Cross Ref]
138. Stevens DA. Intraconazole in cyclodextrin solution. Pharmacotherapy. 1999;9:603–611. doi: 10.1592/phco.19.8.603.31529. [PubMed] [Cross Ref]
139. Shinoda T, Kagatani S, Maeda A, et al. Sugar-branched-cyclodextrins as injectable drug carriers in mice. Drug Dev Ind Pharm. 1999;25:1185–1192. doi: 10.1081/DDC-100102286. [PubMed] [Cross Ref]
140. Blanchard J, Ugwu SO, Bhardwaj R, Dorr T. Anhydrous carbopol polymer gels for the topical delivery of oxygen/water sensitive compounds. Pharm Dev Technol. 2000;7:249–255. [PubMed]
141. Piel G, Evrard B, Van Hees T, Delattre L. Comparison of the IV pharmacokinetics in sheep of miconazole-cyclodextrin solutions and a micellar solution. Int J Pharm. 1999;180:41–45. doi: 10.1016/S0378-5173(98)00403-7. [PubMed] [Cross Ref]
142. Sideris EE, Koupparis MA, Macheras PE. Effect of cyclodextrins on protein binding of drugs: the diflunisal/hydroxypropyl-beta-cyclodextrin model case. Pharm Res. 1994;11:90–95. doi: 10.1023/A:1018901912619. [PubMed] [Cross Ref]
143. Grosse PY, Bressoile F, Rouanet P, Joulia JM, Pinguest F. Methyl-beta-cyclodextrin and doxorubicin pharmacokinetics and tissue concentrations following bolus injection of these drugs alone or together in the rabbit. Int J Pharm. 1999;180:215–223. doi: 10.1016/S0378-5173(99)00008-3. [PubMed] [Cross Ref]
144. Hirayama F, Mieda S, Miyamoto Y, Arima H, Uekama K. Heptakis (2, 6-di-O-methyl-3-O-acetyl)-beta-cyclodextrin: a water-soluble cyclodextrin derivative with low hemolytic activity. J Pharm Sci. 1999;88:970–975. doi: 10.1021/js990128i. [PubMed] [Cross Ref]
145. Saarinen-Savolainen P, Jarvinen T, Araki-Sasaki K, Watanabe H, Urtti A. Evaluation of cytotoxicity of various ophthalmic drugs, eye drop excipients and cyclodextrins in an immortalized human corneal epithelial cell line. Pharm Res. 1998;15:1275–1280. doi: 10.1023/A:1011956327987. [PubMed] [Cross Ref]
146. Siefert B, Keipert S. Influence of alpha-cyclodextrin and hydroxyalkylated β-cyclodextrin derivatives on the corneal uptake and permeation aqueous pilocarpine-HCL solutions. J Pharm Sci. 1997;86:716–720. doi: 10.1021/js960389h. [PubMed] [Cross Ref]
147. Becirevic-Lacan M, Filipovic-Grcic J. Effect of hydroxypropyl-beta-cyclodextrin on hydrocortisone dissolution from films intended for ocular drug delivery. Pharmazie. 2000;55:518–520. [PubMed]
148. Aktas Y, Unlu N, Orhan M, Irkec M, Hincal AA. Influence of hydroxypropyl β-cyclodextrin on the corneal permeation of pilocarpine. Drug Dev Ind Pharm. 2003;29:223–230. doi: 10.1081/DDC-120016730. [PubMed] [Cross Ref]
149. Merkus FW, Verhoef JC, Marttin E, et al. Cyclodextrin in nasal drug delivery. Adv Drug Deliv Rev. 1999;36:41–57. doi: 10.1016/S0169-409X(98)00054-4. [PubMed] [Cross Ref]
150. Loftsson T, Gudmundsdottir H, Sigurjonsdottir JF, et al. Cyclodextrin solubilization of benzodiazepines: formulation of midazolam nasal spray. Int J Pharm. 2001;212:29–40. doi: 10.1016/S0378-5173(00)00580-9. [PubMed] [Cross Ref]
151. Zhang Y, Jiang XG, Yao J. Nasal absorption enhancement of insulin by sodium deoxycholate in combination with cyclodextrins. Acta Pharmacol Sin. 2001;22:1051–1056. [PubMed]
152. Srichana T, Suedee R, Reanmongkol W. Cyclodextrin as a potential drug carrier in salbutamol dry powder aerosols: the in vitro deposition and toxicity studies of the complexes. Respir Med. 2001;95:513–519. doi: 10.1053/rmed.2001.1079. [PubMed] [Cross Ref]
153. Gudmundsdottir H, Sigurjonsdottir JF, Masson M, Fjalldal O, Stefansson E, Loftsson T. Intranasal administration of midazolam in a cyclodextrin based formulation: bioavailability and clinical evaluation in humans. Pharmazie. 2001;56:963–966. [PubMed]
154. Uekama K, Kondo T, Nakamura K, et al. Modification of rectal absorption of morphine from hollow-type suppositories with a combination of alpha-cyclodextrin and viscosity-enhancing polysaccharide. J Pharm Sci. 1995;84:15–20. doi: 10.1002/jps.2600840106. [PubMed] [Cross Ref]
155. Kowari K, Hirosawa I, Kurai H, Utoguchi N, Fujii M, Watanabe Y. Pharmacokinetics and pharmacodynamics of human chorionic gonadotropin (hCG) after rectal administration of hollow-type suppositories containing hCG. Biol Pharm Bull. 2002;25:678–681. doi: 10.1248/bpb.25.678. [PubMed] [Cross Ref]
156. Hirayama F, Uekama K. Cyclodextrin-based controlled drug release system. Adv Drug Deliv Rev. 1999;36:125–141. doi: 10.1016/S0169-409X(98)00058-1. [PubMed] [Cross Ref]
157. Sinha VR, Nanda A, Kumria R. Cyclodextrins as sustained-release carriers.Pharmaceutical Technology. 2002. Available at: http://www. Accessed May 25, 2005.
158. Horiuchi Y, Hirayama F, Uekama K. Slow-release characteristics of diltiazem from ethylated β-cyclodextrin complex. J Pharm Sci. 1990;79:128–132. doi: 10.1002/jps.2600790211. [PubMed] [Cross Ref]
159. Hirayama F, Hirashima N, Abe K, Uekama K, Ijitsu T, Ueno M. Utilization of diethyl-beta-cyclodextrin as a sustained-release carrier for isosorbide dinitrate. J Pharm Sci. 1988;77:233–236. doi: 10.1002/jps.2600770310. [PubMed] [Cross Ref]
160. Uekama K, Horikawa T, Yamanaka M, Hirayama F. Peracylated β-cyclodextrins as, novel sustained-release carriers for a water-soluble drug, molsidomine. J Pharm Pharmacol. 1994;46:714–717. [PubMed]
161. Wang Z, Horikawa T, Hirayama F, Uekama K. Design and in vitro evaluation of a modified-release oral dosage form of nifedipine by hybridization of hydroxypropyl-beta-cyclodextrin and hydroxypropyl-cellulose. J Pharm Pharmacol. 1993;45:942–946. [PubMed]
162. Quaglia F, Varricchio G, Miro A, La Rotonda MI, Larobina D, Mensitieri G. Modulation of drug release from hydrogels by using cyclodextrins: the case of nicardipine/ beta-cyclodextrin system in crosslinked polyethylenglycol. J Control Release. 2001;71:329–337. doi: 10.1016/S0168-3659(01)00242-5. [PubMed] [Cross Ref]
163. Rao VM, Haslam JL, Stella VJ. Controlled and complete release of a model poorly water-soluble drug, prednisolone from hydroxypropyl methylcellulose matrix tablets using (SBE) (7m)-beta-cyclodextrin as a solubilizing agent. J Pharm Sci. 2001;90:807–816. doi: 10.1002/jps.1034. [PubMed] [Cross Ref]
164. Fernandes CM, Teresa Viera M, Veiga FJ. Physicochemical characterization and in vitro dissolution behavior of nicardipine-cyclodextrins inclusion compounds. Eur J Pharm Sci. 2002;15:79–88. doi: 10.1016/S0928-0987(01)00208-1. [PubMed] [Cross Ref]
165. Fernandes CM, Ramos P, Falcao AC, Veiga FJ. Hydrophilic and hydrophobic cyclodextrins in a new sustained release oral formulation of nicardipine: in vitro evaluation bioavailability studies in rabbits. J Control Release. 2003;88:127–134. doi: 10.1016/S0168-3659(02)00465-0. [PubMed] [Cross Ref]
166. Chowdary KPR, Reddy GK. Complexes of nifedipine with β- and hydroxypropyl-β-cyclodextrin in the design of nifedipine SR tablets. Ind J Pharm Sci. 2002;64:142–146.
167. Burgos AE, Belchior JC, Sinisterra RD. Controlled release of rhodium (II) carboxylates and their association complexes with cyclodextrins from hydroxyapatite matrix. Biomaterials. 2002;23:2519–2526. doi: 10.1016/S0142-9612(01)00386-6. [PubMed] [Cross Ref]
168. Minami K, Hirayama F, Uekama K. Colon-specific drug delivery based on a cyclodextrin prodrug: release behavior of biphenylylacetic acid from its cyclodextrin conjugates in rat intestinal tracts after oral administration. J Pharm Sci. 1998;87:715–720. doi: 10.1021/js9704339. [PubMed] [Cross Ref]
169. Hirayama F, Ogata T, Yano H, et al. Release characteristics of a short-chain fatty acid, n-butyric acid from its beta-cyclodextrin ester conjugate in rat biological media. J Pharm Sci. 2000;89:1486–1495. doi: 10.1002/1520-6017(200011)89:11<1486::AID-JPS11>3.0.CO;2-D. [PubMed] [Cross Ref]
170. Yano H, Hirayama F, Kamada M, Arima H, Uekama K. Colon-specific delivery of prednisolone-appended alpha-cyclodextrin conjugate: alleviation of systemic side effect after oral administration. J Control Release. 2002;79:103–112. doi: 10.1016/S0168-3659(01)00532-6. [PubMed] [Cross Ref]
171. Lopez MEV, Reyes LN, Igea SA, Espinar FJO, Mendez JB. Formulation of triamcinolone acetonide pellets suitable for coating and colon targeting. Int J Pharm. 1999;79:229–235. doi: 10.1016/S0378-5173(98)00369-X. [PubMed] [Cross Ref]
172. Irie T, Uekama K. Cyclodextrins in peptide and protein delivery. Adv Drug Deliv Rev. 1999;36:101–123. doi: 10.1016/S0169-409X(98)00057-X. [PubMed] [Cross Ref]
173. Augustijns PF, Bradshaw TP, Gan LSL, Hendren RW, Thakker DR. Evidence for a polarized efflux system in caco-2 cells capable of modulating cyclosporin a transport. Biochem Biophys Res Commun. 1993;197:360–365. doi: 10.1006/bbrc.1993.2487. [PubMed] [Cross Ref]
174. Burton PS, Conradi RA, Hilgers AR, Ho NFH. Evidence for a polarized efflux system for peptides in the apical membrane of caco-2 cells. Biochem Biophys Res Commun. 1993;190:760–766. doi: 10.1006/bbrc.1993.1114. [PubMed] [Cross Ref]
175. Ueda K, Shimabuku AM, Konishi H, et al. Functional expression of human P-glycoprotein inSchizosaccharomyces pombe. FEBS Lett. 1993;330:279–282. doi: 10.1016/0014-5793(93)80888-2. [PubMed] [Cross Ref]
176. Loe DW, Sharom FJ. Interaction of multidrug-resistant Chinese hamster ovary cells with the peptide ionophore gramicidin D. Biochim Biophys Acta. 1994;1190:72–84. doi: 10.1016/0005-2736(94)90035-3. [PubMed] [Cross Ref]
177. Takahashi H, Kim RB, Perry PR, Wilkinson GR. Characterization of the hepatic canalicular membrane transport of a model oligopeptide: ditekiren. J Pharm Exp Therapeutics. 1997;281:297–303. [PubMed]
178. Sharom FJ, Xiaohong YU, DioDiodato G, Chu JWK. Synthetic hydrophobic peptides are substrates for P-glycoprotein and stimulate drug transport. Biochem J. 1996;320:421–428. [PubMed]
179. McNally EJ, Park JY. Peptides and Proteins- Oral Absorption. In: Swarbrick J, Boylan JC, editors. Encyclopedia of Pharmaceutical Technology. 2nd ed. New York, NY: Marcell Dekker; 2002. pp. 2096–2113.
180. Arima H, Yunomae K, Morikawa T, Hirayama F, Uekama K. Contribution of cholesterol and phospholipids to inhibitory effect of dimethyl-β-cyclodextrin on efflux function of P-glycoprotein and multidrug resistance-associated protein 2 in vinblastine-resistant Caco-2 cell monolayers. Pharm Res. 2004;21:625–634. doi: 10.1023/B:PHAM.0000022409.27896.d4. [PubMed] [Cross Ref]
181. Arima H, Yunomae K, Hirayama F, Uekama K. Contribution of P-glycoprotein to the enhancing effects of dimethyl-β-cyclodextrin on oral bioavailability of Tacrolimus. J Pharm Exp Therapeutics. 2001;297:547–555. [PubMed]
182. Verhoef JC, Schipper NGM, Romejin SG, Merkus FWHM. The potential of cyclodextrins as absorption enhancers in nasal delivery of peptide drugs. J Control Release. 1994;29:351–360. doi: 10.1016/0168-3659(94)90080-9. [Cross Ref]
183. Jerry N, Anitha Y, Sharma CP, Sony P. In vivo, absorption studies of insulin from an oral delivery system. Drug Deliv. 2001;8:19–23. doi: 10.1080/107175401300002711. [PubMed] [Cross Ref]
184. Dass CR. Vehicles for oligonucleotide delivery. J Pharm Pharmacol. 2002;54:3–27. doi: 10.1211/0022357021771887. [PubMed] [Cross Ref]
185. Redenti E, Pietra C, Gerlozy A, Szente L. Cyclodextrins in oligonucleotide delivery. Adv Drug Deliv Rev. 2001;53:235–244. doi: 10.1016/S0169-409X(01)00230-7. [PubMed] [Cross Ref]
186. Driscoll CO, Darcy R. Cyclodextrin constructs for delivery of genotherapeutic agents.Business Briefing: Pharmatech2002. Available at: http://www.bbriefingscom/pdf/17/ACF9C6C.pdf. Accessed May 25, 2005.
187. Hwang SJ, Bellocq NC, Davis ME. Effects of structure of β-cyclodextrin-containing polymers on gene delivery. Bioconjugate Chem. 2001;12:280–290. doi: 10.1021/bc0001084. [PubMed] [Cross Ref]
188. Pun SH, Davis DE. Development of a nonviral gene delivery vehicle for systemic application. Bioconjugate Chem. 2002;13:630–639. doi: 10.1021/bc0155768. [PubMed] [Cross Ref]
189. Croyle MA, Roessler BJ, Hsu CP, Sun R, Amidon GL. Beta cyclodextrins enhance adenoviral-mediated gene delivery to the intestine. Pharm Res. 1998;15:1348–1355. doi: 10.1023/A:1011985101580. [PubMed] [Cross Ref]
190. Lopez RF, Collett JH, Bently MV. Influence of cyclodextrin complexation on the in vitro permeation and skin metabolism of dexamethasone. Int J Pharm. 2000;200:127–132. doi: 10.1016/S0378-5173(00)00365-3. [PubMed] [Cross Ref]
191. Orienti I, Zecchi V, Bernabei S, Sentimenti S, Fini A. Diffusion of ketoprofen from coprecipitates through a non porous lipidic membrane. Boll Chim Farm. 1989;128:336–343. [PubMed]
192. Loftsson T, Masson M. Cyclodextrins in topical drug formulations: theory and practice. Int J Pharm. 2001;225:15–30. doi: 10.1016/S0378-5173(01)00761-X. [PubMed] [Cross Ref]
193. Chang SL, Banga AK. Transdermal iontophoretic delivery of hydrocortisone from cyclodextrin solutions. J Pharm Pharmacol. 1988;50:635–640. [PubMed]
194. Doliwa A, Santoyo S, Ygartua P. Transdermal iontophoresis and skin retention of piroxicam from gels containing piroxicam: hydroxypropyl-beta-cyclodextrin complexes. Drug Dev Ind Pharm. 2001;27:751–758. doi: 10.1081/DDC-100107238. [PubMed] [Cross Ref]
195. Tanaka M, Matsuda H, Sumiyoshi H, et al. 2-Hydroxy- propylated cyclodextrins as a sustained release carrier for fragrance materials. Chem Pharm Bull (Tokyo). 1996;44:416–420.
196. Buschmann HJ, Schollmeyer E. Applications of cyclodextrins in cosmetic products: a review. J Cosmet Sci. 2002;53:185–191. [PubMed]
197. Brewster ME, Loftsson T. The use of chemically modified cyclodextrins in the development of formulations for chemical delivery systems. Pharmazie. 2002;57:94–101. [PubMed]
198. Wu WM, Wu J, Bodor N. Effect of 2-hydroxypropyl-beta-cyclodextrin on the solubility, stability, and pharmacological activity of the chemical delivery system of TRH analogs. Pharmazie. 2002;57:130–134. [PubMed]
199. McCormack B, Gregoriadis G. Entrapment of cyclodextrin-drug complexes into liposomes: potential advantages in drug delivery. J Drug Target. 1994;2:449–454. doi: 10.3109/10611869408996821. [PubMed] [Cross Ref]
200. McCormack B, Gregoriadis G. Drugs-in-cyclodextrins-in-liposomes: an approach to controlling the fate of water insoluble drugs in vivo. Int J Pharm. 1998;162:59–69. doi: 10.1016/S0378-5173(97)00413-4. [Cross Ref]
201. McCormack B, Gregoriadis G. Drugs-in-cyclodextrins-in liposomes: a novel concept in drug delivery. Int J Pharm. 1994;112:249–258. doi: 10.1016/0378-5173(94)90361-1. [Cross Ref]
202. Duchene D, Ponchel G, Wouessidjewe D. Cyclodextrins in targeting. Application to nanoparticles. Adv Drug Del Rev. 1999;36:29–40. doi: 10.1016/S0169-409X(98)00053-2. [PubMed] [Cross Ref]
203. McCormack B, Gregoriadis G. Comparative studies of the fate of free and liposome-entrapped hydroxypropyl-/3-cyclodextrin/drug complexes after intravenous injection into rats: implications in drug delivery. Biochim Biophys Acta. 1996;1291:237–244. [PubMed]
204. Skalko N, Brandl M, Ladan MB, Grid JF, Genjak IJ. Liposomes with nifedipine and nifedipine-cyclodextrin complex: calorimetrical. Eur J Pharm Sci. 1996;4:359–366. doi: 10.1016/S0928-0987(96)00180-7. [Cross Ref]
205. Fatouros DG, Hatzidimitriu K, Antimisiaris SG. Liposomes encapsulating prednisolone- cyclodextrin complexes: comparision of membrane integrity and drug release. Eur J Pharm Sci. 2001;13:287–296. doi: 10.1016/S0928-0987(01)00114-2. [PubMed] [Cross Ref]
206. Skalko-Basnet N, Pavelic Z, Becirevic-Lacan M. Liposomes containing drug and cyclodextrin prepared by the one-step spray-drying method. Drug Dev Ind Pharm. 2000;26:1279–1284. doi: 10.1081/DDC-100102309. [PubMed] [Cross Ref]
207. Loukas YL, Jayasekera P, Gregoriadis G. Novel liposome-based multicomponent systems for the protection of photolabile agents. Int J Pharm. 1995;117:85–94. doi: 10.1016/0378-5173(94)00320-5. [Cross Ref]
208. Loukas YL, Vraka V, Gregoriadis G. Drugs, in cyclodextrins, in liposomes: a novel approach to the chemical stability of drugs sensitive to hydrolysis. Int J Pharm. 1998;162:137–142. doi: 10.1016/S0378-5173(97)00421-3. [Cross Ref]
209. Sukegawa T, Furuike T, Niikura K, Yamagishi A, Monde K, Nishimura S. Erythrocyte-like liposomes prepared by means of amphiphilic cyclodextrin sulfates. Chem Commun. 2002;5:430–431. doi: 10.1039/b110673b. [PubMed] [Cross Ref]
210. Filipovic-Grcic J, Laan MB, Skalko N, Jalsenjak I. Chitosan microspheres of nifedipine and nifedipine-cyclodextrin inclusion complexes. Int J Pharm. 1996;135:183–190. doi: 10.1016/0378-5173(96)04470-5. [Cross Ref]
211. Filipovic-Grcic J, Voinovich D, Moneghini M, Becirevic-Lacan M, Magarotto L, Jalsenjak I. Chitosan microspheres with hydrocortisone and hydrocortisone-hydroxypropyl-b-cyclodextrin inclusion complex. Eur J Pharm Sci. 2000;9:373–379. doi: 10.1016/S0928-0987(99)00078-0. [PubMed] [Cross Ref]
212. Bibby DC, Davies NM, Tucker IG. Investigations into the structure and composition of beta-cyclodextrin/poly (acrylic acid) microspheres. Int J Pharm. 1999;180:161–168. doi: 10.1016/S0378-5173(99)00004-6. [PubMed] [Cross Ref]
213. Bibby DC, Davies NM, Tucker IG. Poly (acrylic acid) microspheres containing β-cyclodextrin: loading and in vitro release of two dyes. Int J Pharm. 1999;187:243–250. doi: 10.1016/S0378-5173(99)00190-8. [PubMed] [Cross Ref]
214. Kang F, Jiang G, Hinderliter A, Luca PPD, Singh J. Lysozyme stability in primary emulsion for PLGA microsphere preparation: effect of recovery methods and stabilizing excipients. Pharm Res. 2002;19:629–633. doi: 10.1023/A:1015354028908. [PubMed] [Cross Ref]
215. Kang F, Singh J. Conformational stability of a model protein (bovine serum albumin) during primary emulsification process of PLGA microspheres synthesis. Int J Pharm. 2003;260:149–156. doi: 10.1016/S0378-5173(03)00263-1. [PubMed] [Cross Ref]
216. Quaglia F, De Rosa G, Granata E, Ungaro F, Fattal E, La Rotonda MI. Feeding liquid, non-ionic surfactant and cyclodextrin affect the properties of insulin-loaded poly(lactide-co-glycolide) microspheres prepared by spray-drying. J Control Release. 2003;86:267–278. doi: 10.1016/S0168-3659(02)00414-5. [PubMed] [Cross Ref]
217. Fundueanu G, Constantin M, Dalpiaz A, et al. Preparation and characterization of starch/cyclodextrin bioadhesive microspheres as platform for nasal administration of Gabexate Mesylate (Foy®) in allergic rhinitis treatment. Biomaterials. 2004;25:159–170. doi: 10.1016/S0142-9612(03)00477-0. [PubMed] [Cross Ref]
218. Constantin M, Fundueanu G, Bortolotti F, Cortesi R, Ascenzi P, Menegatti E. Preparation and characterisation of poly(vinyl alcohol)/ cyclodextrin microspheres as matrix for inclusion and separation of drugs. Int J Pharm. 2004;285:87–96. doi: 10.1016/j.ijpharm.2004.07.025. [PubMed] [Cross Ref]
219. Pariot N, Levy FE, Andry MC, Levy MC. Cross-linked beta-cyclodextrin microcapsules. II. Retarding effect on drug release through semi-permeable membranes. Int J Pharm. 2002;232:175–181. doi: 10.1016/S0378-5173(01)00899-7. [PubMed] [Cross Ref]
220. Memisoglu E, Bochot A, Sen M, Duchene D, Hincal AA. Non-surfactant nanospheres of progesterone inclusion complexes with amphiphilic β-cyclodextrins. Int J Pharm. 2003;251:143–153. doi: 10.1016/S0378-5173(02)00593-8. [PubMed] [Cross Ref]
221. Monza da Silveira A, Ponchel G, Puisieux F, Duchene D. Combined poly (isobutylcyanoacrylate) and cyclodextrins nanoparticles for enhancing the encapsulation of lipophilic drugs. Pharm Res. 1998;15:1051–1055. doi: 10.1023/A:1011982211632. [PubMed] [Cross Ref]
222. Duchene D, Ponchel G, Wouessidjewe D. Cyclodextrins in targeting Application to nanoparticles. Adv Drug Deliv Rev. 1999;36:29–40. doi: 10.1016/S0169-409X(98)00053-2. [PubMed] [Cross Ref]
223. Boudad H, Legrand P, Lebas G, Cheron M, Duchene D, Ponchel G. Combined hydroxypropyl-beta-cyclodextrin and poly (alkylcyanoacrylate) nanoparticles intended for oral administration of saquinavir. Int J Pharm. 2001;218:113–124. doi: 10.1016/S0378-5173(01)00622-6. [PubMed] [Cross Ref]
224. Radwan MA. Preparation and in vivo evaluation of parenteral metoclopramide-loaded poly (alkylcyanoacrylate) nanospheres in rats. J Microencapsul. 2001;18:467–477. doi: 10.1080/02652040010018146. [PubMed] [Cross Ref]
225. Cavalli R, Peira E, Caputo O, Gasco MR. Solid lipid nanoparticles as carriers of hydrocortisone and progesterone complexes with betacyclodextrins. Int J Pharm. 1999;182:59–69. doi: 10.1016/S0378-5173(99)00066-6. [PubMed] [Cross Ref]
226. Memisoglu E, Bochot A, Sen M, Charon D, Duchene D, Hincal AA. Amphiphilic beta-cyclodextrins modified on the primary face: synthesis, characterization, and evaluation of their potential as novel excipients in the preparation of nanocapsules. J Pharm Sci. 2002;91:1214–1224. doi: 10.1002/jps.10105. [PubMed] [Cross Ref]
227. Memisoglu E, Bochot A, Ozalp M, Sen M, Duchene D, Hincal AA. Direct formation of nanospheres from amphiphilic beta-cyclodextrin inclusion complexes. Pharm Res. 2003;20:117–125. doi: 10.1023/A:1022263111961. [PubMed] [Cross Ref]
228. Gèze A, Aous S, Baussanne I, Putaux JL, Defaye J, Wouessidjewe D. Influence of chemical structure of amphiphilic β-cyclodextrins on their ability to form stable nanoparticles. Int J Pharm. 2002;242:301–305. doi: 10.1016/S0378-5173(02)00192-8. [PubMed] [Cross Ref]
229. Shangraw RF, Pande GS, Gala P. Charactarisation of the tableting properties of beta cyclodextrin: the effects of processing variableson the inclusion complex formation, compactability and dissolution. Drug Dev Ind Pharm. 1992;18:1831–1851. doi: 10.3109/03639049209046334. [Cross Ref]
230. Suihko E, Korhoneno O, Jarvinen T, et al. Complexation with tolbutamide modifies, the physicochemical and tableting properties of hydroxypropyl-beta-cyclodextrin. Int J Pharm. 2001;215:137–145. doi: 10.1016/S0378-5173(00)00682-7. [PubMed] [Cross Ref]
231. Tsai T, Wu JS, Ho HO, Sheu MT. Modification of physical characteristics of microcrystalline cellulose by codrying with beta-cyclodextrins. J Pharm Sci. 1998;87:117–122. doi: 10.1021/js960486a. [PubMed] [Cross Ref]
232. Li WD, Huang JC, Corke H. Effect of beta-cyclodextrin on pasting properties of wheat starch. Nahrung. 2000;44:164–167. doi: 10.1002/1521-3803(20000501)44:3<164::AID-FOOD164>3.0.CO;2-X. [PubMed] [Cross Ref]
233. Wu J, Ho H, Sheu M. Influence of wet granuation and lubrication on the powder and tableting properties of codried product of microcrystalline cellulose with beta-cyclodextrin. Eur J Pharm Biopharm. 2001;51:63–69. doi: 10.1016/S0939-6411(00)00137-5. [PubMed] [Cross Ref]
234. Gazzaniga A, Sangalli ME, Bruni G, Zema L, Vecchio C, Giordano F. The use of beta-cyclodextrin as a pelletization agent in the extrusion/ spheronization process. Drug Dev Ind Pharm. 1998;24:869–873. [PubMed]
235. Branchu S, Forbes RT, York P, Petren S, Nyquest H, Camber O. Hydroxypropyl-beta-cyclodextrin inhibits spray-drying-induced inactivation of beta-galactosidase. J Pharm Sci. 1999;88:905–911. doi: 10.1021/js9804819. [PubMed] [Cross Ref]
236. Tokihiro K, Irie T, Uekama K. Varying effects of cyclodextrin derivatives on aggregation and thermal behavior of insulin in aqueous solution. Chem Pharm Bull (Tokyo) 1997;45:525–531. [PubMed]
237. Kitamura S, Fujimura T, Kohda S. Interaction between surface-active drug (FK906, rennin inhibitor) and cyclodextrins in aqueous solution. J Pharm Sci. 1999;88:327–330. doi: 10.1021/js980278d. [PubMed] [Cross Ref]
238. Blanco-Fuente H, Esteban-Fernandez B, Blanco-Mendez J, Otero-Espinar FJ. Use of beta-cyclodextrins to prevent modifications of the properties of carbopol hydrogels due to carbopol-drug interactions. Chem Pharm Bull (Tokyo). 2002;50:40–46. doi: 10.1248/cpb.50.40. [PubMed] [Cross Ref]
239. Muñoz-Ruiz AM, Paronen P. Particle and powder properties of cyclodextrins. Int J Pharm. 1997;148:33–39. doi: 10.1016/S0378-5173(96)04820-X. [Cross Ref]
240. Zannou EA, Streng WH, Stella VJ. Osmotic properties of sulfo-butylether and hydroxypropyl cyclodextrins. Pharm Res. 2001;18:1226–1231. doi: 10.1023/A:1010947631380. [PubMed] [Cross Ref]
241. Proniuk S, Blanchard J. Influence of degree of substitution of cyclodextrins on their colligative properties in solution. J Pharm Sci. 2001;90:1086–1090. doi: 10.1002/jps.1062. [PubMed] [Cross Ref]
242. Loftsson T, Stefansdottir O, Friariksdottir H, Guomundsson O. Interaction between preservatives and 2-hydroxypropyl β-cyclodextrin. Drug Dev Ind Pharm. 1992;18:1477–1484. doi: 10.3109/03639049209040853. [Cross Ref]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists