PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of aapspharmspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
 
AAPS PharmSciTech. 2006 September; 7(3): E80–E86.
Published online 2006 August 4. doi:  10.1208/pt070367
PMCID: PMC2750509

Thermoreversible-mucoadhesive Gel for nasal delivery of sumatriptan

Abstract

The purpose of the present study was to develop intranasal delivery systems of sumatriptan using thermoreversible polymer Pluronic F127 (PF 127) and mucoadhesive polymer Carbopol 934P (C934P). Formulations were modulated so as to have gelation temperature below 34°C to ensure gelation at physiological temperature after intranasal administration. Gelation temperature was determined by physical appearance as well as by rheological measurement. The gelation temperatures of the formulations decreased by addition of increasing concentrations of Carbopol (ie, from 29°C for 18% PF127 to 23.9°C for 18% PF127, 0.5% Carbopol). The mucoadhesive force in terms of detachment stress, determined using sheep nasal mucosal membrane, increased with increasing concentration of Carbopol. The results of in vitro drug permeation studies across sheep nasal mucosa indicate that effective permeation coefficient could be significantly increased by using in situ gelling formulation with Carbopol concentration 0.3% or greater. Finally, histopathological examination did not detect any damage during in vitro permeation studies. In conclusion, the PF 127 gel formulation of sumatriptan, with in situ gelling and mucoadhesive properties with increased permeation rate is promising for prolonging nasal residence time and thereby nasal absorption.

Keywords: Carbopol, migraine, mucoadhesive, nasal, Pluronic F127

Full Text

The Full Text of this article is available as a PDF (263K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Fowler PA, Lacey LF, Thomas M, Keene ON, Tanner RJ, Baber NS. The clinical pharmacology, pharmacokinetics and metabolism of sumatriptan. Eur Neurol. 1991;31:291–294. doi: 10.1159/000116756. [PubMed] [Cross Ref]
2. Ryan R, Elkind A, Baker CC, Mullican W, DeBussey S, Asgharnejad M. Sumatriptan, nasal spray for the acute treatment of migraine: results of two clinical studies. Neurology. 1997;49:1225–1230. [PubMed]
3. Vyas TK, Babbar AK, Sharma RK, Singh S, Mirsa A. Preliminary brain-targeting studies on intranasal, mucoadhesive microemulsions of sumatriptan. AAPS PharmSciTech. 2006;7:E8–E8. doi: 10.1208/pt070108. [PubMed] [Cross Ref]
4. Zhou M, Donovan MD. Intranasal mucociliary clearance of putative bioadhesive polymer gels. Int J Pharm. 1996;135:115–125. doi: 10.1016/0378-5173(96)04441-9. [Cross Ref]
5. Illum L. Bioadhesive formulations for nasal peptide delivery. In: Mathiowitz E, Chickering DE, Lehr CM, editors. Bioadhesive Drug Delivery Systems. New York, NY: Marcel Dekker; 1999. pp. 507–562.
6. Majithiya RJ, Murthy RS. Chitosan-based mucoadhesive microspheres of clarithromycin as a delivery system for antibiotic to stomach. Curr Drug Deliv. 2005;2:235–242. doi: 10.2174/1567201054367995. [PubMed] [Cross Ref]
7. D’Souza R, Mutalik S, Venkatesh M, Vidyasagar S, Udupa N. Insulin gel as an alternate to parenteral insulin: formulation, preclinical, and clinical studies. AAPS PharmSciTech. 2005;6:E184–E189. doi: 10.1208/pt060227. [PMC free article] [PubMed] [Cross Ref]
8. Bromberg LE, Ron ES. Protein and peptide release from temperature-responsive gels and thermogelling polymer matrices. Adv Drug Deliv Rev. 1998;31:197–221. doi: 10.1016/S0169-409X(97)00121-X. [PubMed] [Cross Ref]
9. Pisal SS, Paradkar AR, Mahadik KR, Kadam SS. Pluronic gels for nasal delivery of Vitamin B12. Part I: Preformulation study. Int J Pharm. 2004;270:37–45. doi: 10.1016/j.ijpharm.2003.10.005. [PubMed] [Cross Ref]
10. Schmolka IR. Artificial skin: preparation and properties of Pluronic F-127 gels for the treatment of burns. J Biomed Mater Res. 1972;6:571–582. doi: 10.1002/jbm.820060609. [PubMed] [Cross Ref]
11. Choi HG, Oh YK, Kim CK. In situ gelling and mucoadhesive liquid suppository containing acetaminophen: enhanced bioavailability. Int J Pharm. 1998;165:23–32. doi: 10.1016/S0378-5173(97)00385-2. [Cross Ref]
12. Jones DS, Woolfson AD, Brown AF, Coulter WA, McClelland C, Irwin CR. Design, characterization and preliminary clinical evaluation of a novel mucoadhesive topical formulation containing tetracycline for the treatment of periodontal disease. J Control Release. 2000;67:357–368. doi: 10.1016/S0168-3659(00)00231-5. [PubMed] [Cross Ref]
13. Ch’ng HS, Park H, Kelly P, Robinson JR. Bioadhesive polymers as platforms for oral controlled drug delivery II. Synthesis and evaluation of some swelling water-insoluble bioadhesive polymers. J Pharm Sci. 1985;74:339–405. [PubMed]
14. Lang S, Oschmann R, Traving B, Langguth P, Merkle HP. Transport and metabolic pathway of thymocartin (TP4) in excised bovine nasal mucosa. J Pharm Pharmacol. 1996;48:1190–1196. [PubMed]
15. Keck T, Leiacker R, Riechelmann H, Reittinger G. Temperature profile in the nasal cavity. Laryngoscope. 2000;110:651–654. doi: 10.1097/00005537-200004000-00021. [PubMed] [Cross Ref]
16. Kabanov AV, Batrakova EV, Alakhov VU. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release. 2002;82:189–212. doi: 10.1016/S0168-3659(02)00009-3. [PubMed] [Cross Ref]
17. Cabana A, AitKadi A, Juhasz J. Study of the gelation process of polyethylene oxide a-polypropylene oxide b-polyethylene oxide a copolymer (Poloxamer 407) aqueous solutions. J Colloid Interface Sci. 1997;190:307–312. doi: 10.1006/jcis.1997.4880. [PubMed] [Cross Ref]
18. Rassing J, Attwood D. Ultrasonic velocity and light scattering studies on polyoxyethylene-polyoxypropylene copolymer PF127 in aqueous, solution. Int J Pharm. 1982;13:47–55. doi: 10.1016/0378-5173(82)90141-7. [Cross Ref]
19. Efentakis M, Koutlis A, Vlachou M. Development, and evaluation of oral multiple-unit and single-unit hydrophilic controlled-release systems. AAPS PharmaSciTech. 2000;1:E34–E34. [PMC free article] [PubMed]
20. Kunisawa J, Okudaira A, Tsutusmi Y, et al. Characterization of mucoadhesive microspheres for the induction of mucosal and systemic immune responses. Vaccine. 2000;19:589–594. doi: 10.1016/S0264-410X(00)00094-3. [PubMed] [Cross Ref]
21. Wadell C, Bjork E, Camber O. Permeability, of porcine nasal mucosa correlated with human nasal absorption. Eur J Pharm Sci. 2003;18:47–53. doi: 10.1016/S0928-0987(02)00240-3. [PubMed] [Cross Ref]
22. Chen G, Hoffman AS, Kabra B, Randeri K. Temperature-induced gelation Pluronic-g-poly(acrylic acid) graft copolymers for prolonged drug delivery to the eye. In: Harris JM, Zalips S, editors. Poly(ethylene glycol): Chemistry and Biological Applications. New York, NY: Oxford University Press USA; 1997. pp. 441–451.
23. Lue\en HL, Lehr CM, Rentel CO, et al. Bioadhesive polymers for the peroral delivery of peptide drugs. J Control Release. 1994;29:329–338. doi: 10.1016/0168-3659(94)90078-7. [Cross Ref]
24. Lueßen HL, Rentel CO, Kotze AF, et al. Mucoadhesive polymers in peroral peptide drug delivery. IV. Polycarbophil and chitosan are potent enhancers of peptide transport acros intestinal mucosa in vitro. J Control Release. 1997;45:15–23. doi: 10.1016/S0168-3659(96)01536-2. [Cross Ref]
25. Bromberg L. Interactions among proteins and hydrophobically modified polyelectrolytes. J Pharm Pharmacol. 2001;53:541–547. doi: 10.1211/0022357011775659. [PubMed] [Cross Ref]
26. Bromberg L, Alakhov A. Effects of polyether-modified pol (acrylic acid) microgels on doxorubicin transport in human intestinal epithelial Caco-2 cell layers. J Control Release. 2003;88:11–22. doi: 10.1016/S0168-3659(02)00419-4. [PubMed] [Cross Ref]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists