Search tips
Search criteria 


Logo of aapspharmspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
AAPS PharmSciTech. 2004 December; 5(4): 129–137.
Published online 2004 September 23. doi:  10.1208/pt050468
PMCID: PMC2750493

Nanoparticles containing ketoprofen and acrylic polymers prepared by an aerosol flow reactor method


The purpose of this study was to outline the effects of interactions between a model drug and various acrylic polymers on the physical properties of nanoparticles prepared by an aerosol flow reactor method. The amount of model drug, ketoprofen, in the nanoparticles was varied, and the nanoparticles were analyzed for particle size distribution, particle morphology, thermal properties, IR spectroscopy, and drug release. The nanoparticles produced were spherical, amorphous, and had a matrix-type structure. Ketoprofen crystallization was observed when the amount of drug in Eudragit L nanoparticles was more than 33% (wt/wt). For Eudragit E and Eudragit RS nanoparticles, the drug acted as an effective plasticizer resulting in lowering of the glass transition of the polymer. Two factors affected the preparation of nanoparticles by the aerosol flow reactor method, namely, the solubility of the drug in the polymer matrix and the thermal properties of the resulting drug-polymer matrix.

Keywords: nanoparticles, ketoprofen, aerosol, polymer, Eudragit

Full Text

The Full Text of this article is available as a PDF (1.5M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Kreuter J. Nanoparticles. In: Swarbrick J, Boylan J C, editors. Encyclopedia of Pharmaceutical Technology. New York, NY: Marcel Dekker; 1994. pp. 165–190.
2. Couvreur P, Dubernet C, Puisieux F. Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur J Pharm Biopharm. 1995;41:2–13.
3. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54:631–651. doi: 10.1016/S0169-409X(02)00044-3. [PubMed] [Cross Ref]
4. Peltonen L, Koistinen P, Karjalainen M, Häkkinen A, Hirvonen J. The effect of cosolvents on the formulation of nanoparticles from low-molecular-weight poly(1)lactide. AAPS PharmSciTech. 2002;3:E32–E32. doi: 10.1208/pt030432. [PMC free article] [PubMed] [Cross Ref]
5. Damgé C, Michel C, Aprahamian M, Couvreur P, Devissaguet JP. Nanocapsules as carriers for oral peptide delivery. J Control Release. 1990;13:233–239. doi: 10.1016/0168-3659(90)90013-J. [Cross Ref]
6. Damgé C, Vranckx H, Balschmidt P, Couvreur P. Poly(alkyl cyanoacrylate) nanospheres for oral administration of insulin. J Pharm Sci. 1997;86:1403–1409. doi: 10.1021/js970124i. [PubMed] [Cross Ref]
7. Chen X, Young TJ, Sarkari M, Williams RO, Johnston KP. Preparation of cyclosporine A nanoparticles by evaporative precipitation into aqueous solution. Int J Pharm. 2002;242:3–14. doi: 10.1016/S0378-5173(02)00147-3. [PubMed] [Cross Ref]
8. Eerikäinen H, Kauppinen EI. Preparation of polymeric nanoparticles containing corticosteroid by a novel aerosol flow reactor method. Int J Pharm. 2003;263:69–83. doi: 10.1016/S0378-5173(03)00370-3. [PubMed] [Cross Ref]
9. Eerikäinen H, Kauppinen EI, Kansikas J. Polymeric drug nanoparticles prepared by an aerosol flow reactor method. Pharm Res. 2004;21:136–143. doi: 10.1023/B:PHAM.0000012161.58738.25. [PubMed] [Cross Ref]
10. Shukla AJ. Polymethacrylates. In: Wade A, Weller P J, editors. Handbook of Pharmaceutical Excipients. 2nd ed. Washington, DC: American Pharmaceutical Association, Pharmaceutical Press; 1994.
11. Dittgen M, Durani M, Lehmann K. Acrylic polymers: a review of pharmaceutical applications. STP Pharma Sci. 1997;7:403–437.
12. US Pharmacopeia XXVII. <724> Drug Release. Rockville, MD: United States Pharmacopeial Convention; 2003.
13. US Pharmacopeia XXVII. <711> Dissolution. Rockville, MD: United States Pharmacopeial Convention; 2003.
14. TSI Incorporated.Model 3075/3076 Constant Output Atomizer Instruction Manual. St Paul, MN: TSI Incorporated; 2000.
15. Lefebvre AH. Atomization and sprays. In: Chigier N, editor. Combustion: An International Series. New York, NY: Hemisphere Publishing Corporation; 1989.
16. Bodmeier R, Chen H. Preparation and characterization of microspheres containing the anti-inflammatory agents, indomethacin, ibuprofen, and ketoprofen. J Control Release. 1989;10:167–175. doi: 10.1016/0168-3659(89)90059-X. [Cross Ref]
17. Habib MJ, Mesue R. Development of controlled release formulations of ketoprofen for oral use. Drug Dev Ind Pharm. 1995;21:1463–1472. doi: 10.3109/03639049509063033. [Cross Ref]
18. Dubernet C, Rouland JC, Benoit JP. Ibuprofen-loaded ethylcellulose microspheres: analysis of the matrix structure by thermal analysis. J Pharm Sci. 1991;80:1029–1033. doi: 10.1002/jps.2600801106. [PubMed] [Cross Ref]
19. Palmieri GF, Bonacucina G, Martino P, Martelli S. Gastro-resistant microspheres containing ketoprofen. J Microencapsul. 2002;19:111–119. doi: 10.1080/02652040110065477. [PubMed] [Cross Ref]
20. Pignatello R, Ferro M, Puglisi G. Preparation of solid dispersions of nonsteroidal anti-inflammatory drugs with acrylic polymers and studies on mechanisms of drug-polymer interactions. AAPS PharmSciTech. 2002;3:E10–E10. doi: 10.1208/pt030210. [PMC free article] [PubMed] [Cross Ref]
21. Wunderlich B. Thermal Analysis. San Diego, CA: Academic Press, Inc; 1990.
22. Dubernet C. Thermoanalysis of microspheres. Thermochim Acta. 1995;248:259–269. doi: 10.1016/0040-6031(94)01947-F. [Cross Ref]
23. Wu C, McGinity JW. Non-traditional plasticization of polymeric films. Int J Pharm. 1999;177:15–27. doi: 10.1016/S0378-5173(98)00312-3. [PubMed] [Cross Ref]
24. Wu C, McGinity JW. Influence of ibuprofen as a solid-state plasticizer in Eudragit RS 30 D on the physicochemical properties of coated beads. AAPS PharmSciTech. 2001;2:E24–E24. doi: 10.1208/pt020424. [PMC free article] [PubMed] [Cross Ref]
25. Sancin P, Caputo O, Cavallari C, et al. Effects of ultrasound-assisted compaction on Ketoprofen/Eudragit S100 mixtures. Eur J Pharm Sci. 1999;7:207–213. doi: 10.1016/S0928-0987(98)00022-0. [PubMed] [Cross Ref]
26. Mura P, Faucci MT, Parrini PL, Furlanetto S, Pinzauti S. Influence of the preparation method on the physicochemical properties of ketoprofen-cyclodextrin binary systems. Int J Pharm. 1999;179:117–128. doi: 10.1016/S0378-5173(98)00390-1. [PubMed] [Cross Ref]
27. Lin S-Y, Liao C-M, Hsiue G-H, Liang R-C. Study of a theophylline-Eudragit L mixture using a combined system of microscopic Fourier-transform infrared spectroscopy and differential scanning calorimetry. Thermochim Acta. 1995;254:153–166. doi: 10.1016/0040-6031(94)02114-4. [Cross Ref]
28. Lin SY, Peng RI. Solid-state interaction studies of drugs/polymers: I. Indomethacin/Eudragit E, RL or S resins. STP Pharm Sci. 1993;3:465–471.
29. Lin S-Y, Yu H-L, Li M-J. Formation of six-membere cyclic anhydrides by thermally induced intramolecular ester condensation in Eudragit E film. Polym. 1999;40:3589–3593. doi: 10.1016/S0032-3861(98)00488-1. [Cross Ref]
30. Krause H-J, Schwarz A, Rohdewald P. Polyactic acid nanoparticles, a colloidal delivery system for lipophilic drugs. Int J Pharm. 1985;27:145–155. doi: 10.1016/0378-5173(85)90064-X. [Cross Ref]
31. Higuchi T. Mechanism of sustained-action medication. J Pharm Sci. 1963;52:1145–1149. doi: 10.1002/jps.2600521210. [PubMed] [Cross Ref]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists