Search tips
Search criteria 


Logo of aapspharmspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
AAPS PharmSciTech. 2004 June; 5(2): 24–31.
Published online 2004 February 19. doi:  10.1208/pt050228
PMCID: PMC2750463

Crystal structure determination of thymoquinone by high-resolution X-ray powder diffraction


The crystal structure of 2-isopropyl-5-methyl-1,4-benzoquinone (thymoquinone) and its thermal behavior—as necessary physical and chemical properties—were determined in order to enhance the current understanding of thymoquinone chemical action by using high resolution x-ray powder diffraction, Fourier transform infrared spectroscopy (FTIR), and 3 thermo-analytical techniques thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). The findings obtained with high-resolution x-ray powder diffraction and molecular location methods based on a simulated annealing algorithm after Rietveld refinement showed that the triclinic unit cell was a=6.73728(8) Å, b=6.91560(8) Å, c=10.4988(2) Å, α=88.864(2)o, β=82.449(1)o, γ=77.0299(9)o; cell volume=472.52(1) Å3, Z=2, and space group equation M1. In addition, FTIR spectrum revealed absorption bands corresponding to the carbonyl and C-H stretching of aliphatic and vinylic groups characteristically observed in such p-benzoquinones. Also, a chemical decomposition process starting at 65°C and ending at 213°C was noted when TGA was used. DSC allowed for the determination of onset at 43.55°C and a melting enthalpy value of ΔHm=110.6 J/g. The low value obtained for the fusion point displayed a van der Waals pattern for molecular binding, and the thermograms performed evidence that thymoquinone can only be found in crystalline triclinic form, as determined by DRX methods.

KeyWords: thymoquinone, x-ray powder diffraction, thermo-analytical techniques, FTIR spectrum

Full Text

The Full Text of this article is available as a PDF (404K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Gilani AH, Aziz N, Khurram IM, Chaudhary KS, Iqbal A. Bronchodilator, Spasmolytic and Calcium Antagonist Activities of Nigella sativa seeds (Kalonji): a traditional herbal product with Multiple Medicinal Uses. J Pak Med Assoc. 2001;51:115–119. [PubMed]
2. Salomi N, Nair S, Jayawardhanan K, Vorghese C, Pankkar K. Antitumour Principles from Nigella sativa seeds. Cancer Lett. 1992;63:41–46. doi: 10.1016/0304-3835(92)90087-C. [PubMed] [Cross Ref]
3. Worthen DR, Ghosheh OA, Crooks PA. The in vitro anti-tumor activity of some crude and purified components of blackseed, Nigella sativa Linn. Anticancer Res. 1998;18:1527–1532. [PubMed]
4. Houghton PJ, Zarka R, Delasheras B, Hoult JRS. Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid-peroxidation. Planta Med. 1995;61:33–36. doi: 10.1055/s-2006-957994. [PubMed] [Cross Ref]
5. Chakravarty N. Inhibition of Histamine release from mast cells by nigellone. Ann Allergy. 1993;70:237–242. [PubMed]
6. Abou Basha Alila I, Rashed Mohamed S, Aboul-Enein Asan Y. TLC assay of thymoquinone in black seed oil (Nigela sativa Linn) and identification of dithymoquinone and thymol. J Liquid Chromatogr. 1995;18:105–115. doi: 10.1080/10826079508009224. [Cross Ref]
7. Ghosheh OA, Houdi AA, Crooks PA. High-performance liquid chromatographic analysis of the pharmacologically active quinines and related compounds in the oil of the black seed (Nigella sativa L) J Pharm Biomed Anal. 1999;19:757–762. doi: 10.1016/S0731-7085(98)00300-8. [PubMed] [Cross Ref]
8. Badary OA. Thymoquinone attenuates ifosfamide-induced Fanoni syndrome in rats and enhances its antitumor activity in mice. J Etlmopharmacol. 1999;67:135–142. doi: 10.1016/S0378-8741(98)00242-6. [PubMed] [Cross Ref]
9. Badary OA, Nagi MN, Al-Shabanah OA, Al-Sawaf HA, Al-Sohaibani MO, Al-Bekairi AM. Thymoquinone ameliorates the nephrotoxicity induced by cisplatin in rodents and potentiates its antitumor activity. Can J Physiol Pharmacol. 1997;75:1356–1361. doi: 10.1139/cjpp-75-12-1356. [PubMed] [Cross Ref]
10. Milos M, Matelic J, Jerkovic I. Chemical composition and antioxidant effect of glycosidically bound volatile compounds from oregano (Origanum vulgare L ssp hirtum) Food Chem. 2000;71:79–83. doi: 10.1016/S0308-8146(00)00144-8. [Cross Ref]
11. Badary O, Abdel-Naim A, Abdel-Wajab M, Hamada F. The influence of thymoquinone on doxorubicin-induced hyperlipidemic nephropathy in rats. Toxicology. 2000;143(3):219–226. doi: 10.1016/S0300-483X(99)00179-1. [PubMed] [Cross Ref]
12. Al-Shabanah OA, Badary OA, Nagi MN, Al-Gharably NM, Al-Rikabi AC, Al-Bekairi AM. Thymoquinone protects against doxorubicin-induced cardiotoxicity without compromising its antitum or activity. J Exp Clin Cancer Res. 1998;17:193–198. [PubMed]
13. Pagola S, Stephens PW, Bohle DS, Kosar AD, Madsen SK. The structure of malaria pigment beta-haematin. Nature. 2000;404:307–310. doi: 10.1038/35005132. [PubMed] [Cross Ref]
14. Shankland K, McBride L, David WIF, Shankland N, Steele G. Molecular, crystallographic and algorithmic factors in structure determination from powder diffraction data by simulated annealing. J Appl Crystallogr. 2002;35:443–454. doi: 10.1107/S0021889802007835. [Cross Ref]
15. Engel GE, Wilke S, Konig O, Harris KDM, Leusen FJJ. Powder Solve—a complete package for crystal structure solution from powder diffraction patterns. J. Appl Crystallogr. 1999;32:1169–1179. doi: 10.1107/S0021889899009930. [Cross Ref]
16. Le Bail A, Duroy H, Fourquet JL. Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull. 1988;23:447–452. doi: 10.1016/0025-5408(88)90019-0. [Cross Ref]
17. Stephens PW, Pagola S. Powder Structure Solution Program. Available at; March 27, 2004.
18. Werner PE, Eriksson L, Westdahl M. TREOR, a semiexhaustive trial-and-error powder indexing program for all symmetries. J Appl Crystallogr. 1985;18:367–370. doi: 10.1107/S0021889885010512. [Cross Ref]
19. Visser JW. A fully automatic program for finding the unit cell from powder data. J Appl Crystallogr. 1969;2:89–95. doi: 10.1107/S0021889869006649. [Cross Ref]
20. Krivy I, Gruber B. A unified algorithm for determining, the reduced (Niggli) cell. Acta Crystallogr. 1976;32:297–298. doi: 10.1107/S0567739476000636. [Cross Ref]
21. Rodriguez-Carvajal J. FULLPROF: A program for Rietveld refinement and pattern matching analysis. Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr. 1990; Toulouse, France; 127.
22. Larson AC, Von Dreele RB. GSAS—Generalized Crystal Structure Analysis System. Los Alamos, NM: Los Alamos National Laboratory; 1987. Report No. LA-UR-86-748.
23. Spek AL. PLATON-A Multipurpose Crystallographic Tool [computer program]. 1990; Available at: Accessed March 22, 2004.
24. HyperChem Molecular Modeling System [computer program]. Version 6.01. Gainesville, FL: Hypercube Inc; 2000.
25. Allen FH, Kennard O. 3D Search and Research using the Cambridge Structural Database. Chemical Design Automation News. 1998;8:31–37.
26. CS Chem 3D Pro Molecular Modeling and Analysis Program [computer program]. Cambridge, MA: CambridgeSoft Corp; 1996.
27. Scott HG. The estimation of standard deviation in powder diffraction Rietveld Refinements. J Appl Crystallogr. 1983;16:159–163. doi: 10.1107/S0021889883010195. [Cross Ref]
28. Farrugia LJ. WinGX suite for small-molecule single-crystal crystallography. J Appl Crystallogr. 1999;32:837–838. doi: 10.1107/S0021889899006020. [Cross Ref]
29. Dinnebier RE, Dollase WA, Helluv X, et al. Order-disorder phenomena determined by high-resolution powder diffraction: the structures of tetrakis (trimethylsilyl) methane C[Si(CH3)3]4 and tetrakis (trimethylsilyl) silane Si[Si(CH3)3]4. Acta Crystallogr. 1999;55:1014–1029. doi: 10.1107/S0108767399007114. [PubMed] [Cross Ref]
30. Integrated Spectral Data Base System for Organic Compounds [database online]. Ibaraki, Japan: National Institute of Advanced Industrial Science and Technology; 2003. Updated September 30, 2003. Available at:
31. Yamakita Y, Tasumi M. Vibrational analyses of p-benzoquinodimethane ethane and p-benzoquinone based on ab initio Hartree-Fock and second-order Moller-Plesset calculations. J. Phys Chem. 1995;99:8524–8534. doi: 10.1021/j100021a013. [Cross Ref]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists