Search tips
Search criteria 


Logo of aapspharmspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
AAPS PharmSciTech. 2007 March; 8(1): E118–E123.
Published online 2007 March 2. doi:  10.1208/pt0801017
PMCID: PMC2750427

Suppression of agglomeration of ciprofloxacin-loaded human serum albumin nanoparticles


The present study is aimed at developing and exploring the use of pectin in suppression of agglomeration of ciprofloxacinloaded human serum albumin (HSA) nanoparticles. The HSA-pectin nanoparticles loaded with ciprofloxacin were prepared by the pH-coacervation method, and various physicochemical parameters such as particle size, morphology, ζ-potential, electrolyte-induced flocculation, pH-dependent ζ-potential, drug loading, in vitro drug release, and stability of nanoparticles, were evaluated. The size of the HSA-pectin nanoparticles (F3) was found to be 180 to 290 nm. The HSA nanoparticles were modified with pectin when the critical flocculation concentration of nanoparticles in Na2SO4 solution was increased from 0.3 M to 0.9 M. The isoelectric points of the formed nanoparticles were found to be relatively lower between pH values 3 and 6. Pectin may be used as a pharmaceutical additive for the suppression of particle agglomeration in HSA nanoparticles, and the effect may be attributed to the pectin segments present on the surface of nanoparticles.

Keywords: Ciprofloxacin, human serum albumin, pectin, nanoparticles, agglomeration

Full Text

The Full Text of this article is available as a PDF (234K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Davis SS, Illum L. Colloidal delivery systems, opportunities and challenges. In: Tomlinson E, Davis SS, editors. Site-Specific Drug Delivery: Cell Biology, Medical and Pharmaceutical Aspects. Chichester, UK: Wiley; 1986. pp. 931–931.
2. Moghimi SM, Porter CJH, Muir IS, Illum L, Davis SS. Non-phagocytic uptake of intravenously injected microspheres in rat spleen: influence of particle size and hydrophilic coating. Biochem Biophys Res Commun. 1991;177:861–866. doi: 10.1016/0006-291X(91)91869-E. [PubMed] [Cross Ref]
3. Illium L, Davis SS, Wilson CG, Thomas NW, Frier M, Hardy JG. Blood clearance and organ deposition of intravenously administered colloidal particles. The effects of particle size, nature and shape. Int J Pharm. 1982;12:135–146. doi: 10.1016/0378-5173(82)90113-2. [Cross Ref]
4. Artursson P. The fate of microparticulate drug carriers after intravenous administration. In: Illum L, Davis SS, editors. Polymers in Controlled Drug Delivery. Bristol, UK: Wright; 1987. pp. 15–24.
5. Lin W, Martin C, Garnett ES, Davis SS, Illum L. Preparation and in vitro characterization of HSA-mPEG nanoparticles. Int J Pharm. 1999;189:161–170. doi: 10.1016/S0378-5173(99)00253-7. [PubMed] [Cross Ref]
6. Harashima H, Sakata K, Funato K, Kiwada H. Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm Res. 1994;11:402–406. doi: 10.1023/A:1018965121222. [PubMed] [Cross Ref]
7. Romero EL, Morilla MJ, Regts J, Koning GA, Scherphof GL. On the mechanism of hepatic transendothelial passage of large liposomes. FEBS Lett. 1999;448:193–196. doi: 10.1016/S0014-5793(99)00364-6. [PubMed] [Cross Ref]
8. Gallo JM, Hung CT, Perrier DG. Analysis of albumin microsphere preparation. Int J Pharm. 1984;22:63–74. doi: 10.1016/0378-5173(84)90046-2. [Cross Ref]
9. Müller BG, Leuenberger H, Kissel T. Albumin nanospheres as carriers for passive drug targeting: an optimized manufacturing technique. Pharm Res. 2007;13:32–37. doi: 10.1023/A:1016064930502. [PubMed] [Cross Ref]
10. Lin W, Coombes AGA, Davies MC, Davis SS, Illum L. Preparation of sub-100 nm human serum albumin nanospheres using a pH-coacervation method. J Drug Target. 1993;1:237–243. doi: 10.3109/10611869308996081. [PubMed] [Cross Ref]
11. Langer K, Balthasar S, Vogel V, Dinauer N, von Briesen H, Schubert D. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm. 2003;257:169–180. doi: 10.1016/S0378-5173(03)00134-0. [PubMed] [Cross Ref]
12. Bozdag S, Dillen K, Vandervoort J, Ludwig A. The effect of freeze-drying with different cryoprotectants and gamma-irradiation sterilization on the characteristics of ciprofloxacin HCl-loaded poly(D,L-lactide-glycolide) nanoparticles. J Pharm Pharmacol. 2005;57:699–707. doi: 10.1211/0022357056145. [PubMed] [Cross Ref]
13. Chen CG, Lin W, Coombes AG, Davis SS, Illum L. Preparation of human serum albumin microspheres by novel acetone-heat denaturation method. J Microencapsul. 1994;4:395–407. doi: 10.3109/02652049409034257. [PubMed] [Cross Ref]
14. Yi YM, Yang TY, Pan WM. Preparation and distribution of 5-fluorouracil125I sodium alginate-bovine serum albumin nanoparticle. World J Gastroenterol. 1999;5:57–60. [PMC free article] [PubMed]
15. Rodriguez Cruz MS, Gonzalez Alonso I, Sánchez-Navarro A, Sayalero Marinero ML. In vitro study of the interaction between quinolones and polyvalent cations. Pharm Acta Helv. 1999;73:237–245. doi: 10.1016/S0031-6865(98)00029-6. [PubMed] [Cross Ref]
16. Christensen SH. Pectins. In: Glicksman M, editor. Food Hydrocolloids. Boca Raton, FL: CRC Press; 1986. pp. 223–224.
17. Pszczola DE. Pectin's functionality finds use in fat-replacer market. Food Technol. 1991;45:116–117.
18. Szu SC, Bystricky S, Hinojosa-Ahumada M, Egan W, Robbins JB. Synthesis and some immunologic properties of an O-acetyl pectin [poly(1→4)-α-D-GlapA]-protein conjugate as a vaccine for typhoid fever. Infect Immun. 1994;62:5545–5549. [PMC free article] [PubMed]
19. Plaschina IG, Braudo EE, Tolstoguzov VB. Circular-dichroism studies of pectin solutions. Carbohydr Res. 1978;60:1–8. doi: 10.1016/S0008-6215(00)83459-X. [Cross Ref]
20. Florence AT, Attwood D. Physicochemical Principles of Pharmacy. London, UK: Macmillan; 1988.
21. Lin W, Coombes AG, Garnett MC, et al. Preparation of sterically stabilized human serum albumin nanospheres using a novel Dextranox-mPEG crosslinking agent. Pharm Res. 1994;11:1588–1592. doi: 10.1023/A:1018957704209. [PubMed] [Cross Ref]
22. Stolnik S, Dunn SE, Gamett MC. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Pharm Res. 1994;11:1800–1808. doi: 10.1023/A:1018931820564. [PubMed] [Cross Ref]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists